
DESIGN AND DEVELOPMENT OF A SINGLE
ROUTER DECIMETER LEVEL INDOOR

LOCALISATION SYSTEM

Voggu Aravind Reddy

Master of Technology Thesis
June 2020

International Institute of Information Technology, Bangalore

DESIGN AND DEVELOPMENT OF A SINGLE

ROUTER DECIMETER LEVEL INDOOR

LOCALISATION SYSTEM

Submitted to International Institute of Information Technology,
Bangalore

in Partial Fulfillment of
the Requirements for the Award of

Master of Technology

by

Voggu Aravind Reddy
IMT2015524

International Institute of Information Technology, Bangalore
June 2020

Dedicated to

Friends and Family

Thesis Certificate

This is to certify that the thesis titled Design and Development of a Single Router

Decimeter Level Indoor Localisation System submitted to the International Insti-

tute of Information Technology, Bangalore, for the award of the degree of Master of

Technology is a bona fide record of the research work done by Voggu Aravind Reddy,

IMT2015524, under my supervision. The contents of this thesis, in full or in parts,

have not been submitted to any other Institute or University for the award of any degree

or diploma. The thesis conforms to plagiarism guidelines and compliance as per UGC

recommendations.

Dr. Madhav Rao

Bengaluru,

The 28th of June, 2020.

iv

DESIGN AND DEVELOPMENT OF A SINGLE ROUTER DECIMETER

LEVEL INDOOR LOCALISATION SYSTEM

Abstract

This Thesis presents the design and implementation of a CSI Fingerprinting based In-

door Localisation system with a resolution of 10 cm using a single off-the-shelf router

and a Raspberry Pi 3B+, using no special hardware requirements or hardware modifica-

tions. A De-Noising procedure to filter noise from CSI and use temporal-data-fusion to

improve accuracy to above 99.90%. Our experiments in both Line-of-Sight and Non-

Line-of-Sight have shown a mean error of 3.5 cm at a 10 cm resolution.

v

Acknowledgements

I would like to thank my mentor and advisor Prof. Madhav Rao for the continuous

support, help, patience, guidance, and motivation. I’m deeply grateful for his supervi-

sion and numerous hours of collaboration on this Thesis and the work that preceeded it,

despite his many other academic and professional commitments.

Besides my mentor, I would like to thank the rest of my thesis committee: Prof.

Debabrata Das, and prof. Girish kumar for their help and insights. Also thanks to Ms.

Ramadevi S for help with editing and formatting this Thesis.

I would also like to thank Dr. Vikas, whose friendship I’ve had the good fortune

of having. His brilliant ideas, and insights constantly amaze me, and have kept me

motivated. My deepest gratitude for his support, help, and advice on things academical

and beyond.

Thanks to Prof. Jyotsna Bapat, Prof. T.K. Srikanth, Prof. K Subramaniam, Prof.

Subhajit Sen, Prof. Sachit Rao, Prof. V.N. Muralidhara, and other faculty at IIITB, for

their teaching, help, support, and encouragement. Also, thanks to Prof. Sazonov for

hosting me in his lab during last summer.

I would also like to thank Ms. Adhisaya and Ms. Aswini for their constant help,

support, and companionship. Thanks to Mathias Seemoo, Jakob Link, and Mikhael

Zakharov, Jet Yu, Lee Yaohua, and Junye for helping me with collecting CSI with the

Nexmon Framework.

My best friends Vinay and Krishna were the best part of my stay at IIITB. Thanks

for putting up with the shenanigans and bad puns. The memories I had with them will

forever be cherished, and they will always have a special place in my heart.

Thanks to Aparna, Akshi, Kedia, Praneeth, and Vivek for being such good friends,

vi

and all the good times we had together.

Thanks to Parshi, Alan, Aditya T, Bharath, Utkarsh, and Anshika for the completely

unexpected surprises! Thanks to Rachith and Shivang for accompanying me to movies,

and for being such cool people to hangout with. Thanks to Mahith for always being up

for Pizza. Thanks to Dharmik for all the cool ideas and confusing doubts. Thanks to

Vishal, for keeping me company till late night in the lab.

Thanks to Anshuk, Prachi, Sankeerth, Angshuman, Sravya, Juhi, Anagha, Suggu,

Suraj, Surya, Vaibhav, Mohith, Ritvik, Gnaneshwar, Harsha, Sai Charan, Rohil pal,

Shiloni, Abhishek, Soumya, Abhiramon, Atharva, Pranith, Kedar, Kushagra, Charan,

Shebaz, Naman, Rakshith, Pranav, Atibhi, Sushma, Sri Ram, and the rest of my class-

mates. You have made my stay and IIITB truly enjoyable.

Thanks to Arvind, Ronak, Ajay, Nithin, Anurag, Sailesh, Shubhayu, Tanmay, Saad,

and others for working with me on several projects, and whom I’ve had a great pleasure

teaching. Thanks to Sanjay, Mounika, Monika, Ajay, Anmol, Swagatika, and Aarthi,

for all the Badminton. Thanks to Manonmaie, for the friendship, and company which

made the day long journey between Khammam and Bangalore seem not so much.

Thanks to Sai Kiran, Saad, Khaveesh, Shalini, Shubhayu, and Tanmay, without

whose help, I could never have lead the Internet Committee. Also special thanks to

Mr. Murugan, Sasi, Prem, and others in the Data Center who helped us tremendously.

Thanks to Ajay, Abhishek, Shashank, Raghav, Viprav, Tanmoy, Delwar, Masudul,

and Connor for helping me every step of the way at Alabama.

Special thanks to Prof. T.K. Srikanth, the E-Health Research Center, the Visves-

varaya Young Faculty Research Fellowship, The National Institute of Mental Health

and Neuro-Sciences (NIMHANS), and the International Institute of Information Tech-

vii

nology Bangalore (IIITB) for the support, and for funding this research needed for this

Thesis.

I’m deeply thankful for my ever loving and supportive family. My beloved parents,

who constantly inspired, supported and encouraged me to realize my dreams and push

my limits. They have alway understood and gave me the freedom to explore. Thanks to

my siblings, for all the years of mischeif and love, which got me through the toughest

of times.

viii

Contents

Abstract iv

Acknowledgements v

List of Figures x

List of Tables xii

List of Abbreviations xiii

1 Introduction 1

1.1 A CSI De-Noising Algorithm . 2

1.2 Data Fusion to improve accuracy . 2

2 Review of Related Literature 3

2.1 Angle of Arrival . 3

2.2 Time based . 4

2.3 Fingerprinting based . 4

ix

3 System Design and Methodology 5

3.1 Device Setup . 5

3.1.1 Raspberry Pi . 5

3.1.2 Wireless Access Point . 9

3.2 Collecting CSI . 9

3.3 Preprocessing CSI . 13

3.3.1 Reading CSI from pcap files 13

3.3.2 Removing unwanted subcarriers 13

3.3.3 Noise Reduction . 14

3.3.4 Normalisation . 15

3.4 Localising with CSI . 15

4 Results 17

5 Conclusions 22

Bibliography 23

A Computer Code 30

x

List of Figures

FC3.1 Picture of the wooden pedestal with a Raspberry Pi 3B+ fixed on top.

The Raspberry Pi is encased in a 3D printed plastic case and has a

Power over Ethernet Hat on top. 7

FC3.2 Picture of an Aluminium stand made from Makerbeam extruded Alu-

minium beams. The Raspberry Pi is fixed at the top, while a Power

Bank used to power is secured at the bottom. The Raspberry Pi is

encased when using this stand to prevent Electrical Short-circuits as

it’s backed against metal. 8

FC3.3 Picture of Line of Sight site A: los-a. 10

FC3.4 Picture of Non Line of Sight site B: nlos-b. 11

FC3.5 Graphic depicting CSI collection. Wireless traffic is generated as the

User Device accesses the network, the Raspberry Pi measures the CSI

data for this traffic. 12

FC3.6 CSI data after removing Null and Pilot Subcarriers at Line of Sight

location (0, 0). 14

FC3.7 CSI data after noise reduction at Line of Sight location (0, 0). 15

xi

FC4.1 Relationship between Classification Accuracy and Improved Accu-

racy by combining 5 predictions. 21

xii

List of Tables

TC4.1 Classification Accuracy in percentage for 10 cm resolution 18

TC4.2 Mean Error in Centimetre for 10 cm resolution 19

TC4.3 Classification Accuracy in percentage for 20 cm resolution 19

TC4.4 Mean Error in Centimetre for 20 cm resolution 19

TC4.5 Classification Accuracy in percentage for 40 cm resolution 19

TC4.6 Mean Error in Centimetre for 40 cm resolution 19

xiii

List of Abbreviations

AP Access Point

AoA Angle of Arrival

CM Centimetre

CSI Channel State Information

DTC Decision Tree Classifier

GNBC Gaussian Naive Bayes Classifier

GPS Global Positioning System

IIITB International Institute of Information Technology Bangalore

LOS Line of Sight

MM Millimetre

NLOS Non Line of Sight

NNR Non-Noise-Reduced

NR Noise-Reduced

OS Operating System

Pi Raspberry Pi

RFC Random Forest Classifier

RSSI Received Signal Strength Indication

SVC Support Vector Classifier

ToF Time of Flight

1

CHAPTER 1

INTRODUCTION

Outdoor localisation systems like GPS (Global Positioning System) have had a pro-

found impact on the World, allowing technologies ranging from Navigation to self-

driving cars, and trans-continental flights that can operate without having to rely on

landmarks. A similarly impactful indoor counterpart doesn’t exist yet because of the

challenging Radio-Environment indoor locations present, and the complexity and re-

quirements of existing Indoor Localisation systems. While GPS enjoys of Line-of-Sight

signal availability, and virtually absent multipath effect, indoor systems are challenged

by Multipath effect, Fading, and Shadowing. This Thesis describes a method of indoor

localisation by turning these very challenges into advantages, and using them to localise

with a single commodity off-the-shelf router indoors.

This Thesis uses a localisation technique called Fingerprinting. Localisation based

on Fingerprinting consists of two phases: Online and Offline. The Online phase is also

called the Training Phase, and includes collecting measurements at various points at

the localisation site. Offline phase is also called Test Phase, and includes finding the

location of a device whose location is unknown, by making measurements again and

comparing them to measurements taken during the online phase.

Traditionally, Fingerprinting based Localisation has been done using RSSI (Re-

2

ceived Signal Strength Indication). RSSI is an estimation of how good the wireless

link between the Device and the Access Point is, and roughly correlates with the dis-

tance between them. Although this is easy to do, techniques using RSSI have acheived

a poor accuracy because of the unstability of RSSI, with their median accuracy rang-

ing from 2-4 metres. Alternatively, CSI (Channel State Information) can be used for

Fingerprinting. CSI is the frequency response of the channel between Access Point and

Device [1]. DeepFi [1] uses CSI and Deep Learning to acheive a mean error of 94 cm.

Please refer to Chapter 2 for a more detailed survey of related work.

The main contribution of this Thesis is a localisation system that uses WiFi CSI Fin-

gerprinting to acheive an indoor localisation resolution of 10 cm with a mean error of

3.50 cm using a single off-the-shelf WiFi router and a Raspberry Pi3B+. No modifica-

tions to the Hardware are required for our method to work. We use two techniques to

acheive this accuracy:

1.1 A CSI De-Noising Algorithm

CSI data is sensitive to movement in the Environment, and this noise reduces local-

isation accuracy. We use data from multiple CSI samples to create a new CSI sample

free of noise, and use it for localisation.

1.2 Data Fusion to improve accuracy

We predict location several times a second, and use the data from those predictions

to create a new, much more accurate prediction.

The Denoising Algorithm is presented in Chapter 3.3.3 and the Data Fusion tech-

nique is described in Chapter 4.

3

CHAPTER 2

REVIEW OF RELATED LITERATURE

The research into Indoor Localisation Systems has produced several techniques, in-

cluding localisation based on Angle of Arrival (AoA), Time of Flight (ToF), and Fin-

gerprinting. A significant part of the literature review in this Thesis has been adapted

from the same section in SpotFi [2].

2.1 Angle of Arrival

Localisation is acheived by triangulating device location using Angle of Arrival be-

tween device and router calculated using multipath signals [3–9]. AoA based systems

use multiple antennas [3] or moving antennas [5] to measure angle. SpotFi acheives the

best known resolution at 40 cm [2].

SpotFi [2] uses a super-resolution algorithm to compute Angle of Arrival accurately

and acheives a median accuracy of 40 cm, but needs atleast 3 antennas, and has been im-

plemented only on an Intel 5300 WiFi Network Interface Card. The Intel chip can only

operate at 20MHz bandwidth, supports WiFi technologies only upto IEEE 802.11n, and

cannot use Wireless Access Points that use encryption for localisation.

4

2.2 Time based

Best known accuracy obtained from a Time Based system that doesn’t need time

synchronisation between Access Point and Device is 2 meters [10–12].

Distance between the Access Point and the Device can be calculated by multiplying

the Time of Flight between them, and the speed of light. This distance can be used to

triangulate the position of the Device. Pinpoint, and other techniques acheive results in

the range of a few metres [8, 10–14].

Synchronicity [15], Sourcesync [16], and others [17–20] synchronise the clock be-

tween the Device and the Access Point and apply super resolution algorithms to obtain a

more accurate ToF. SI-JADE [21], and others [22–25] combine AoA and ToA estimates

to improve accuracy. The papers by Picheral [26], and others [27–30] test the same idea

in simulation.

2.3 Fingerprinting based

Fingerprinting based techniques maintain a database of measurements a quantity at

points of interest, like Magnetism, or RSSI, or CSI and use that to find location.

Zee [31], SurroundSense [32] Centaur [33], Horus [33], and others [34–38] use

Fingerprinting for localisation. Horus provides the best known accuracy with a median

error of 60 cm, and a tail accuracy around 1.3 m.

5

CHAPTER 3

SYSTEM DESIGN AND METHODOLOGY

3.1 Device Setup

3.1.1 Raspberry Pi

A Raspberry Pi 3B+ / or a Raspberry Pi 4B can be used for localisation. We used

a Raspberry Pi 3B+ because of it’s lower power requirements and more widespread

availability and adoption at the time of writing. No additional antennas or wireless

equipment other that what was built into the Raspberry Pi 3B+ was used for collecting

CSI data.

The default Broadcomm firmware doesn’t allow modifications and collection of CSI

data. A C-based firmware patching framework Nexmon [39, 40] was used to patch

Nexmon CSI [41] firmware to enable CSI collection.

Although Nexmon supports CSI collection while connected to a Wireless Access

Point, we disconnected the Raspberry Pi from Wireless Access Points to prevent any

potential interference. The Raspberry Pi was controlled over an Ethernet link instead.

The Ethernet link was also used to provide power to the Raspberry pi using a Raspberry

Pi Power over Ethernet HAT.

6

At the time of this writing, there exist a few Null pointer Dereferences and other

issues in Nexmon CSI that lead to Firmware Traps. This leads to CSI collection stalling,

and needs a reboot to continue collection. An unmerged fix [42] by Mikhail Zakharov

was manually added to correct this behaviour.

Nexmon CSI embeds the CSI data into a UDP stream which can be collected by a

utility like TCPdump.

The Raspberry Pi was fixed atop a wooden pedestal to maintain a 30 cm clearance

above the floor, and to keep it immobile while collecting data. The pedestal can be seen

in Figure FC3.1. An Aluminium stand made of extruded beams, as seen in Figure FC3.2

was also tested and gave good results. When the CSI collection device is too close to

a flat surface, reflections of Radio waves from that surface don’t reach the device. So

a clearance from the floor is theorised to help increase the variance of CSI samples

collected and improve accuracy.

7

(a) Pedestal Top View

(b) Pedestal Side View

Figure FC3.1: Picture of the wooden pedestal with a Raspberry Pi 3B+ fixed on top. The Raspberry Pi
is encased in a 3D printed plastic case and has a Power over Ethernet Hat on top.

8

Figure FC3.2: Picture of an Aluminium stand made from Makerbeam extruded Aluminium beams.
The Raspberry Pi is fixed at the top, while a Power Bank used to power is secured at the bottom. The
Raspberry Pi is encased when using this stand to prevent Electrical Short-circuits as it’s backed against
metal.

9

3.1.2 Wireless Access Point

Any Wireless Access Point with support for 802.11ac is suitable. We used a TP-link

Archer C20 set to operate in channel 36 at a maximum bandwith of 40 MHz. Access

Points created with the WiFi Hotspot feature in Cellphones may not be suitable for

localisation. Tests with a OnePlus 7T operating as an Access Point show increased

noise in CSI data considerably lower localisation accuracy.

3.2 Collecting CSI

CSI data was collected at two locations, a Line-of-Sight location named los-a, and a

Non-Line-of-Sight location named nlos-b. A Raspberry Pi 3B+ device was used to col-

lect CSI data from a TP-link Archer C20 802.11ac compatible Access Point operating

at 40MHz bandwidth on 802.11ac Channel 36.

12000 samples of CSI data was collected at each of the 100 locations spaced 10

cm apart at los-a, and at 18 locations spaced 10 cm apart at nlos-b. The Raspberry Pi

was fixed atop a wooden pedestal while collecting data, to maintain a clearance above

ground. Photos of locations los-a and nlos-b are in Figure FC3.3 and Figure FC3.4

respectively.

A laptop was used to generate WiFi traffic so that CSI can be measured. While pas-

sive Wireless traffic exists at all times around a Wireless AP, it is slow, and sometimes

occupies only 20MHz of the available 40MHz bandwidth. A graphic depicting CSI

collection is in Figure FC3.5.

No additional equipment other than what’s built-in to Raspberry Pi is used for the

collection of CSI. The wpa-supplicant linux module was removed to prevent any po-

tential interference with CSI collection. The Raspberry Pi stays disconnected from any

10

Figure FC3.3: Picture of Line of Sight site A: los-a.

WiFi Access Points, and was controlled over an Ethernet connection.

11

Figure FC3.4: Picture of Non Line of Sight site B: nlos-b.

12

Figure FC3.5: Graphic depicting CSI collection. Wireless traffic is generated as the User Device accesses
the network, the Raspberry Pi measures the CSI data for this traffic.

13

3.3 Preprocessing CSI

3.3.1 Reading CSI from pcap files

CSI data from Nexmon is calculated from both I&Q components, and as such exists

as a Complex-128 number in a pcap file. A custom Python script was used to read CSI

values, calculate the magnitude, and typecast it to Float32. Phase information in CSI

was not used for localisation.

3.3.2 Removing unwanted subcarriers

Subcarriers -64, -63, -62, -61, -60, -59, -1, 0, 1, 59, 60, 61, 62, 63 of a 801.11ac

40MHz WiFi link are called Null-Subcarriers, and have arbitrary CSI values. These

are useful for Wireless Coexistence, but are not useable for localisation. Similarly,

Subcarriers 11, 25, 53, -11, -25, -53 are Pilot subcarriers used to control the Wireless

link. We remove both these sets of Subcarriers from our CSI data. An image of CSI

data after removing these subcarriers is in Figure FC3.6

14

Figure FC3.6: CSI data after removing Null and Pilot Subcarriers at Line of Sight location (0, 0).

3.3.3 Noise Reduction

Further, for every sample, subcarriers with Magnitude greater than 4000 are consid-

ered noise and were made equal to 0.

CSI data is sensitive to movement in the environment, and such noise will affect

localisation accuracy. At each location, an average CSI value is calculated, and 1/3rd

of the samples that are furthest from this mean are considered noise and are removed.

From the remaining 2/3rd samples, every 4 samples are averaged. Since we collected

12000 samples at each location, after processing, we have 2000 samples per location.

An image of CSI data after noise reduction is in Figure FC3.7. The decision to average

every 4 consecutive samples was arrived at heuristically. According to our experiments,

the least number of samples to be averaged for a reasonably noise-less CSI is 4. Using

a higher number of samples may increase the prediction accuracy, but will also increase

the number of CSI samples needed to localise.

15

Figure FC3.7: CSI data after noise reduction at Line of Sight location (0, 0).

3.3.4 Normalisation

Classification algorithms like Support Vector Classifier recommend normalisation of

data by shifting the Mean to 0, and scaling the data to have a unit variance, but we found

that such a normalisation substantially reduces localisation accuracy. No normalisation

was done on the dataset.

3.4 Localising with CSI

Four Classification algorithms from Python Scikit-learn library were used for locali-

sation: Gaussian Naive Bayes Classifier, Support Vector Classifier, Decision Tree Clas-

sifier, Random Forest Classifier. Classification accuracies were measured at 3 localisa-

tion resolutions: 10 cm, 20 cm, 40 cm. Classification accuracy with no noise-reduction

was also measured for all cases except Line of Sight with 10 cm resolution.

16

All the Classifiers use the default Hyperparamters as of Scikit-learn version 0.23.1,

but Hyperparamters for each of the Classification algorithms are furnished below for

reproducibility.

• Gaussian Naive Bayes Classifier

– Smoothening = 1e-9

• Support Vector Classifier

– Regularisation Parameter - C = 1.0

– Kernel = Radial Basis Function ’rbf’

– Kernel Coefficient - gamma = ’scale’

– Tolerance = 1e-3

• Decision Tree Classifier

– Split Critereon = ’gini’

• Random Forest Classifier

– Number of Estimators = 20

– Split Critereon = ’gini’

17

CHAPTER 4

RESULTS

Classification accuracies and Mean Distance Errors for Gaussian Naive Bayes, Sup-

port Vector, Decision Tree, and Random Forest Classifiers were measured in both Line-

of-Sight and Non-Line-of-Sight scenarios, at resolutions of 10 cm, 20 cm, and 40 cm,

with and without noise reduction.

Table TC4.1 shows the Classification Accuracies for Gaussian Naive Bayes, Support

Vector, Decision Tree, and Random Forest Classifiers, in Line-of-Sight and Non-Line-

of-Sight scenarios, with and without Noise Reduction at a resolution of 10 cm.

Table TC4.2 shows the Mean Distance Error in Centimetre for Gaussian Naive

Bayes, Support Vector, Decision Tree, and Random Forest Classifiers, in Line-of-Sight

and Non-Line-of-Sight scenarios, with and without Noise Reduction at a resolution of

10 cm.

Table TC4.3 shows the Classification Accuracies for Gaussian Naive Bayes, Support

Vector, Decision Tree, and Random Forest Classifiers, in Line-of-Sight and Non-Line-

of-Sight scenarios, with and without Noise Reduction at a resolution of 20 cm.

Table TC4.4 shows the Mean Distance Error in Centimetre for Gaussian Naive

Bayes, Support Vector, Decision Tree, and Random Forest Classifiers, in Line-of-Sight

and Non-Line-of-Sight scenarios, with and without Noise Reduction at a resolution of

18

20 cm.

Table TC4.5 shows the Classification Accuracies for Gaussian Naive Bayes, Support

Vector, Decision Tree, and Random Forest Classifiers, in Line-of-Sight and Non-Line-

of-Sight scenarios, with and without Noise Reduction at a resolution of 40 cm.

Table TC4.6 shows the Mean Distance Error in Centimetre for Gaussian Naive

Bayes, Support Vector, Decision Tree, and Random Forest Classifiers, in Line-of-Sight

and Non-Line-of-Sight scenarios, with and without Noise Reduction at a resolution of

40 cm.

Table TC4.1: Classification Accuracy in percentage for 10 cm resolution

Classification Accuracy in percentage for 10 cm resolution
Classifier LOS LOS unfiltered NLOS NLOS unfiltered
NBC 71.17% N/A 90.90% 76.16%
SVC 92.73% N/A 98.71% 95.50%
DTC 86.33% N/A 96.46% 91.68%
RFC 93.15% N/A 98.01% 94.10%

19

Table TC4.2: Mean Error in Centimetre for 10 cm resolution

Mean Error in Centimetre for 10 cm resolution
Classifier LOS LOS unfiltered NLOS NLOS unfiltered
NBC 13.80 cm N/A 2.24 cm 8.16 cm
SVC 3.43 cm N/A 0.42 cm 1.18 cm
DTC 6.53 cm N/A 1.27 cm 2.46 cm
RFC 3.18 cm N/A 0.65 cm 1.54 cm

Table TC4.3: Classification Accuracy in percentage for 20 cm resolution

Classification Accuracy in percentage for 20 cm resolution
Classifier LOS LOS unfiltered NLOS NLOS unfiltered
NBC 85.78% 26.80% 95.10% 77.19%
SVC 98.70% 96.11% 98.50% 96.60%
DTC 97.04% 95.44% 95.83% 92.51%
RFC 98.95% 98.02% 97.29% 94.55%

Table TC4.4: Mean Error in Centimetre for 20 cm resolution

Mean Error in Centimetre for 20cm resolution
Classifier LOS LOS unfiltered NLOS NLOS unfiltered
NBC 7.57 cm 36.49 cm 2.01 cm 7.99 cm
SVC 0.79 cm 1.88 cm 0.49 cm 0.96 cm
DTC 1.59 cm 2.37 cm 1.62 cm 2.40 cm
RFC 0.53 cm 0.97 cm 1.01 m 1.56 cm

Table TC4.5: Classification Accuracy in percentage for 40 cm resolution

Classification Accuracy in percentage for 40 cm resolution
Classifier LOS LOS unfiltered NLOS NLOS unfiltered
NBC 97.14% 29.82% 85.70% 96.00%
SVC 98.56% 97.73% 98.09% 95.81%
DTC 98.58% 97.58% 96.59% 92.38%
RFC 99.53% 98.88% 97.47% 92.25%

Table TC4.6: Mean Error in Centimetre for 40 cm resolution

Mean Error in Centimetre for 40 cm resolution
Classifier LOS LOS unfiltered NLOS NLOS unfiltered
NBC 2.00 cm 44.90 cm 5.72 cm 1.60 cm
SVC 1.06 cm 1.50 cm 0.77 cm 1.68 cm
DTC 0.99 cm 1.57 cm 1.38 cm 3.05 cm
RFC 0.27 cm 0.72 cm 1.02 cm 3.10 cm

20

We find that the performance is similar in both Line-of-Sight and Non-Line-of-Sight

scenarios. Support Vector Classifier and Random Forest Classifier are consistently the

highest performers. Accuracy of the Naive Bayes Classifier improved significantly with

the noise-reduction procedure described in Chapter 3.3.3.

To further improve accuracy, localisation can be performed 5 times, and the ma-

jority prediction among the five predictions can be picked as the final prediction. The

improved accuracy with this technique can be calculated with Equation Eqn 4.1.

p f inal = 1− ((1−Pc)
3 ∗P2

c +(1−Pc)
4 ∗P1

c +(1−Pc)
5 ∗P0

c) (Eqn 4.1)

where:

Pc = Initial probability of correct Location Classification.

Pf inal = Post Data-Fusion probability of correct Location Classification.

Figure FC4.1 shows the relationship between Classification Accuracy and Improved

Accuracy by combining 5 predictions. The Final Accuracy is above 99.90% for all

Classification Accuracies above 90%.

21

Figure FC4.1: Relationship between Classification Accuracy and Improved Accuracy by combining 5
predictions.

22

CHAPTER 5

CONCLUSIONS

We have successfully localised a Raspberry Pi 3B+ with no hardware modifications

or additional hardware with a precision of 10 cm using a single off-the-shelf WiFi Ac-

cess Point. The Nexmon CSI framework supports more devices like Raspberry Pi 4B,

Nexus 5, Nexus 6P, and Asus RT-AC86U. We hope that more chips allow collection

of CSI data, and with emergence of simple but accurate techniques like this, Indoor

Localisation becomes ubiquitous.

Time of Flight, and RSSI fingerprinting techniques require multiple Access Points to

operate. Similarly, Angle of Arrival techniques need multiple antennas to compute the

angle. Our ability to localise accurately with a single router is because of the multipath

effect, which makes the channel response unique at each location, and creates a distinct

fingerprint.

23

Bibliography

[1] X. Wang, L. Gao, S. Mao, and S. Pandey, “Csi-based fingerprinting for indoor

localization: A deep learning approach,” IEEE Transactions on Vehicular Tech-

nology, vol. 66, no. 1, pp. 763–776, 2017.

[2] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, “Spotfi: Decimeter level lo-

calization using wifi,” SIGCOMM Computer Communication Review, vol. 45,

p. 269–282, Aug. 2015.

[3] J. Xiong and K. Jamieson, “Arraytrack: A fine-grained indoor location system,” in

Proceedings of the 10th USENIX Conference on Networked Systems Design and

Implementation, nsdi’13, (USA), p. 71–84, USENIX Association, 2013.

[4] S. Kumar, S. Gil, D. Katabi, and D. Rus, “Accurate indoor localization with zero

start-up cost,” in Proceedings of the 20th annual international conference on Mo-

bile computing and networking - MobiCom ’14, (Maui, Hawaii, USA), pp. 483–

494, ACM Press, 2014.

[5] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li, “LTE radio analytics made easy

and accessible,” in Proceedings of the 6th annual workshop on Wireless of the

students, by the students, for the students - S3 ’14, (Maui, Hawaii, USA), pp. 29–

30, ACM Press, 2014.

[6] J. Gjengset, J. Xiong, G. McPhillips, and K. Jamieson, “Phaser: enabling phased

array signal processing on commodity WiFi access points,” in Proceedings of the

24

20th annual international conference on Mobile computing and networking - Mo-

biCom ’14, (Maui, Hawaii, USA), pp. 153–164, ACM Press, 2014.

[7] S. Sen, J. Lee, K.-H. Kim, and P. Congdon, “Avoiding multipath to revive inbuild-

ing WiFi localization,” in Proceeding of the 11th annual international conference

on Mobile systems, applications, and services - MobiSys ’13, (Taipei, Taiwan),

p. 249, ACM Press, 2013.

[8] M. Youssef, A. Youssef, C. Rieger, U. Shankar, and A. Agrawala, “Pinpoint: An

asynchronous time-based location determination system,” in Proceedings of the

4th International Conference on Mobile Systems, Applications and Services, Mo-

biSys ’06, (New York, NY, USA), p. 165–176, Association for Computing Ma-

chinery, 2006.

[9] D. Niculescu and B. Nath, “VOR base stations for indoor 802.11 positioning,” in

Proceedings of the 10th annual international conference on Mobile computing and

networking - MobiCom ’04, (Philadelphia, PA, USA), p. 58, ACM Press, 2004.

[10] A. Marcaletti, M. Rea, D. Giustiniano, V. Lenders, and A. Fakhreddine, “Filter-

ing Noisy 802.11 Time-of-Flight Ranging Measurements,” in Proceedings of the

10th ACM International on Conference on emerging Networking Experiments and

Technologies - CoNEXT ’14, (Sydney, Australia), pp. 13–20, ACM Press, 2014.

[11] M. Ciurana, F. Barcelo-Arroyo, and F. Izquierdo, “A ranging system with ieee

802.11 data frames,” in 2007 IEEE Radio and Wireless Symposium, pp. 133–136,

2007.

[12] S. A. Golden and S. S. Bateman, “Sensor Measurements for Wi-Fi Location with

Emphasis on Time-of-Arrival Ranging,” IEEE Transactions on Mobile Comput-

ing, vol. 6, pp. 1185–1198, Oct. 2007.

25

[13] A. T. Mariakakis, S. Sen, J. Lee, and K.-H. Kim, “SAIL: single access point-based

indoor localization,” in Proceedings of the 12th annual international conference

on Mobile systems, applications, and services - MobiSys ’14, (Bretton Woods,

New Hampshire, USA), pp. 315–328, ACM Press, 2014.

[14] S. Lanzisera, D. Zats, and K. S. J. Pister, “Radio frequency time-of-flight distance

measurement for low-cost wireless sensor localization,” IEEE Sensors Journal,

vol. 11, no. 3, pp. 837–845, 2011.

[15] J. Xiong, K. Jamieson, and K. Sundaresan, “Synchronicity: pushing the enve-

lope of fine-grained localization with distributed mimo,” in Proceedings of the 1st

ACM workshop on Hot topics in wireless - HotWireless ’14, (Maui, Hawaii, USA),

pp. 43–48, ACM Press, 2014.

[16] H. Rahul, H. Hassanieh, and D. Katabi, “SourceSync: a distributed wireless ar-

chitecture for exploiting sender diversity,” in Proceedings of the ACM SIGCOMM

2010 conference on SIGCOMM - SIGCOMM ’10, (New Delhi, India), p. 171,

ACM Press, 2010.

[17] A. F. Cavanaugh, M. Lowe, D. Cyganski, and J. Duckworth, “Wpi precision per-

sonnel location system: Rapid deployment antenna system and sensor fusion for

3d precision location,” in Proceedings of the 2010 International Technical Meeting

of The Institute of Navigation, (Catamaran Resort Hotel, San Diego, CA, USA),

pp. 214–219, 2010.

[18] V. Amendolare, D. Cyganski, and R. J. Duckworth, “Transactional Array Rec-

onciliation Tomography for Precision Indoor Location,” IEEE Transactions on

Aerospace and Electronic Systems, vol. 50, pp. 17–32, Jan. 2014.

[19] S. Venkatraman and J. Caffery, “Hybrid toa/aoa techniques for mobile location

in non-line-of-sight environments,” in 2004 IEEE Wireless Communications and

26

Networking Conference (IEEE Cat. No.04TH8733), vol. 1, pp. 274–278 Vol.1,

2004.

[20] F. Zhao, W. Yao, C. C. Logothetis, and Y. Song, “Super-resolution toa estimation

in ofdm systems for indoor environments,” in 2007 IEEE International Conference

on Networking, Sensing and Control, pp. 723–728, 2007.

[21] A.-J. van der Veen, M. Vanderveen, and A. Paulraj, “SI-JADE: an algorithm for

joint angle and delay estimation using shift-invariance properties,” in First IEEE

Signal Processing Workshop on Signal Processing Advances in Wireless Commu-

nications, (Paris, France), pp. 161–164, IEEE, 1997.

[22] M. Wax and A. Leshem, “Joint estimation of time delays and directions of arrival

of multiple reflections of a known signal,” IEEE Transactions on Signal Process-

ing, vol. 45, pp. 2477–2484, Oct. 1997.

[23] M. Vanderveen, A.-J. Van der Veen, and A. Paulraj, “Estimation of multipath pa-

rameters in wireless communications,” IEEE Transactions on Signal Processing,

vol. 46, pp. 682–690, Mar. 1998.

[24] M. Vanderveen, B. Ng, C. Papadias, and A. Paulraj, “Joint angle and delay esti-

mation (JADE) for signals in multipath environments,” in Conference Record of

The Thirtieth Asilomar Conference on Signals, Systems and Computers, (Pacific

Grove, CA, USA), pp. 1250–1254, IEEE Comput. Soc. Press, 1997.

[25] Yung-Yi Wang, Jiunn-Tsair Chen, and Wen-Hsien Fang, “TST-MUSIC for

joint DOA-delay estimation,” IEEE Transactions on Signal Processing, vol. 49,

pp. 721–729, Apr. 2001.

[26] J. Picheral and U. Spagnolini, “Shift invariance algorithms for the angle/delay esti-

mation of multipath space-time channel,” in IEEE VTS 53rd Vehicular Technology

27

Conference, Spring 2001. Proceedings (Cat. No.01CH37202), vol. 1, (Rhodes,

Greece), pp. 83–87, IEEE, 2001.

[27] D. Inserra and A. M. Tonello, “A Frequency-Domain LOS Angle-of-Arrival Esti-

mation Approach in Multipath Channels,” IEEE Transactions on Vehicular Tech-

nology, vol. 62, pp. 2812–2818, July 2013.

[28] Jiunn-Tsair Chen, Joonsuk Kim, and Jen-Wei Liang, “Multichannel MLSE equal-

izer with parametric FIR channel identification,” IEEE Transactions on Vehicular

Technology, vol. 48, pp. 1923–1935, Nov. 1999.

[29] G. Raleigh and T. Boros, “Joint space-time parameter estimation for wireless com-

munication channels,” IEEE Transactions on Signal Processing, vol. 46, pp. 1333–

1343, May 1998.

[30] Jin He, M. N. S. Swamy, and M. O. Ahmad, “Joint Space-Time Parameter Esti-

mation for Underwater Communication Channels with Velocity Vector Sensor Ar-

rays,” IEEE Transactions on Wireless Communications, vol. 11, pp. 3869–3877,

Nov. 2012.

[31] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee: zero-effort

crowdsourcing for indoor localization,” in Proceedings of the 18th annual interna-

tional conference on Mobile computing and networking - Mobicom ’12, (Istanbul,

Turkey), p. 293, ACM Press, 2012.

[32] M. Azizyan, I. Constandache, and R. Roy Choudhury, “SurroundSense: mobile

phone localization via ambience fingerprinting,” in Proceedings of the 15th annual

international conference on Mobile computing and networking - MobiCom ’09,

(Beijing, China), p. 261, ACM Press, 2009.

[33] R. Nandakumar, K. K. Chintalapudi, and V. N. Padmanabhan, “Centaur: locat-

ing devices in an office environment,” in Proceedings of the 18th annual interna-

28

tional conference on Mobile computing and networking - Mobicom ’12, (Istanbul,

Turkey), p. 281, ACM Press, 2012.

[34] S. Sen, B. Radunovic, R. R. Choudhury, and T. Minka, “You are facing the Mona

Lisa: spot localization using PHY layer information,” in Proceedings of the 10th

international conference on Mobile systems, applications, and services - MobiSys

’12, (Low Wood Bay, Lake District, UK), p. 183, ACM Press, 2012.

[35] Z. Yang, C. Wu, and Y. Liu, “Locating in fingerprint space: wireless indoor local-

ization with little human intervention,” in Proceedings of the 18th annual interna-

tional conference on Mobile computing and networking - Mobicom ’12, (Istanbul,

Turkey), p. 269, ACM Press, 2012.

[36] H. Liu, Y. Gan, J. Yang, S. Sidhom, Y. Wang, Y. Chen, and F. Ye, “Push the limit

of WiFi based localization for smartphones,” in Proceedings of the 18th annual

international conference on Mobile computing and networking - Mobicom ’12,

(Istanbul, Turkey), p. 305, ACM Press, 2012.

[37] H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choudhury, “No

need to war-drive: unsupervised indoor localization,” in Proceedings of the 10th

international conference on Mobile systems, applications, and services - MobiSys

’12, (Low Wood Bay, Lake District, UK), p. 197, ACM Press, 2012.

[38] M. Youssef and A. Agrawala, “Small-scale compensation for WLAN location de-

termination systems,” in 2003 IEEE Wireless Communications and Networking,

2003. WCNC 2003., vol. 3, (New Orleans, LA, USA), pp. 1974–1978, IEEE, 2003.

[39] M. Schulz, D. Wegemer, and M. Hollick, “Nexmon: The c-based firmware patch-

ing framework,” GitHub repository https: // github. com/ seemoo-lab/

nexmon as of commit ‘87218fb‘, 2017.

29

[40] F. Gringoli, M. Schulz, J. Link, and M. Hollick, “Free your csi: A channel state

information extraction platform for modern wi-fi chipsets,” in Proceedings of the

13th International Workshop on Wireless Network Testbeds, Experimental Evalu-

ation & Characterization, WiNTECH ’19, p. 21–28, 2019.

[41] M. Jakob Link, “Nexmon csi: Channel state information extraction on

various broadcom wi-fi chips,” GitHub repository https: // github. com/

seemoo-lab/ nexmon_ csi as of commit ‘aa370c6‘, 2019.

[42] M. Zakharov, “Pull request to fix null pointer dereference, backport a-msdu fixes

for raspberry pi, rssi, frame control, phy bits, etc.,” GitHub repository https: //

github. com/ seemoo-lab/ nexmon_ csi/ pull/ 46 as of commit ‘c4782be‘,

2020.

30

APPENDIX A

COMPUTER CODE

1 from pathlib import Path

2 import numpy as np

3 from joblib import dump

4 from sklearn.svm import SVC

5 from sklearn.naive_bayes import GaussianNB

6 from sklearn.tree import DecisionTreeClassifier

7 from sklearn.ensemble import RandomForestClassifier

8 from sklearn.ensemble import AdaBoostClassifier

9 from sklearn.metrics import plot_confusion_matrix

10 import matplotlib.pyplot as plt

11 from lib import hdf

12 import config

13

14 def mean_dist_error(cmat , labels):

15 nmat = np.array(cmat)

16 numel = nmat.sum()

17

18 coords = np.array ([(int(x.split(’-’)[0]), int(x.split(’-’)[1])) for x in

labels])

19

20 distmat = np.zeros((len(coords), len(coords)))

21 for i in range(len(coords)):

22 distmat[i] = np.sqrt(np.square(coords - coords[i]).sum(axis =1))

23

24 distmean = (distmat * nmat).sum() / numel

25 accuracy = (nmat.trace () * 1.0) / numel

26

31

27 print(distmean , accuracy)

28

29 return (distmean , accuracy)

30

31

32 for site in [Path(x) for x in Path(config.path_data).iterdir () if x.is_dir ()]:

33 model_info = {

34 ’nbc’: {’name’: ’Naive Bayes Classifier ’},

35 ’svc’: {’name’: ’Support Vector Classifier ’},

36 ’dtc’: {’name’: ’Decision Tree Classifier ’},

37 ’rfc’: {’name’: ’Random Forest Classifier ’}

38 }

39

40 models = {

41 # ’nbc ’: GaussianNB ,

42 ’svc’: lambda: SVC(

43 cache_size =1000

44),

45 # ’dtc ’: DecisionTreeClassifier ,

46 ’rfc’: lambda: RandomForestClassifier(n_estimators =20)

47 }

48

49 print(site)

50

51 scoredir = Path(str(site).replace(config.path_data , config.path_scores))

52 modeldir = Path(str(site).replace(config.path_data , config.path_models))

53 if not scoredir.exists ():

54 scoredir.mkdir()

55 modeldir.mkdir()

56

57 hdf_files = site.glob(’*.h5’)

58

59 X, y, X_t , y_t = hdf.split_dataset(

60 hdf_files ,

61 0.2,

62)

63

64 for model in models:

65 print(model , ’fitting ’)

32

66 m = models[model]()

67 m.fit(X, y)

68

69 dump(m, str(modeldir) + ’/%s.joblib ’ % (model))

70

71 print(model , ’fit complete ’)

72 continue

73

74 cmatplot = plot_confusion_matrix(m, X_t , y_t , cmap=plt.cm.Blues ,

values_format=’d’)

75 cmatplot.figure_.set_size_inches (80, 60)

76

77 cmat = cmatplot.confusion_matrix

78 (distmean , accuracy) = mean_dist_error(cmat , cmatplot.display_labels)

79

80 ax = cmatplot.ax_

81 ax.set_title(

82 ’Confusion Matrix of ’ + model_info[model][’name’] + ’ at

location ’ + site.stem +\

83 ’.\n’ + ’Mean error is %.2fcm , and Accuracy is %.2f%%.’ % (

distmean , 100* accuracy)

84 ,

85 fontsize =100)

86 ax.set_xlabel(’Predicted Label ’, fontsize =70)

87 ax.set_ylabel(’True Label ’, fontsize =70)

88 plt.savefig(str(scoredir) + ’/’ + model + ’.png’, dpi=100, fontsize

=70)

89 plt.close(’all’)

90 print(model , ’confusion matrix plotted.’)

Listing A.1: ’measure-scores.py’

1 # plot -availability.py

2

3 from pathlib import Path

4 import pandas as pd

5 from lib import plot

6 import config

7

8 for site in [Path(x) for x in Path(config.path_data).iterdir () if x.is_dir ()]:

33

9

10 plotdir = Path(str(site).replace(config.path_data , config.path_plots))

11 if not plotdir.exists ():

12 plotdir.mkdir ()

13

14 for hdfFile in site.glob(’*.h5’):

15 print(hdfFile)

16

17 csi = pd.read_hdf(hdfFile , key=’all’)

18 csi_np = csi.to_numpy ()

19

20 plot.csi(csi_np ,

21 title=’%d CSI samples at location (%s,%s) on site %s.’ % (

22 csi.shape[0],

23 hdfFile.stem.split(’-’)[0],

24 hdfFile.stem.split(’-’)[1],

25 site.stem

26),

27 filepath=str(hdfFile).replace(config.path_data , config.path_plots

).replace(’.h5’, ’.png’)

28)

Listing A.2: ’plot-availability.py’

1 # pre -process.py

2 ’’’

3 Pre -process

4 ===========

5

6 Convert .pcap files to hdf5

7 files. Acts on all sites in

8 config.path_pcap , except if

9 they are already in config.

10 path_data.

11 ’’’

12

13 from pathlib import Path

14 import pandas as pd

15 import numpy as np

16 from lib import pcap

34

17 from lib import plot

18 import config

19

20 for site_pcap in [Path(x) for x in Path(config.path_pcap).iterdir () if x.is_dir ()

]:

21 site_hdf = Path(str(site_pcap).replace(config.path_pcap , config.path_data))

22 site_hdf_nonfil = Path(str(site_pcap).replace(config.path_pcap , config.

path_data) + ’-nonfil ’)

23

24 if not site_hdf.exists ():

25 site_hdf.mkdir()

26 site_hdf_nonfil.mkdir ()

27

28 for file_pcap in site_pcap.glob(’*.pcap’):

29 print(file_pcap)

30

31 csi = pd.DataFrame(pcap.read_csi(str(file_pcap)))

32

33 nullsubcarriers = [x+64 for x in [-64, -63, -62, -61, -60, -59, -1,

0, 1, 59, 60, 61, 62, 63]]

34 csi = csi.drop(columns=nullsubcarriers)

35

36 pilotsubcarriers = [x+64 for x in [11, 25, 53, -11, -25, -53]]

37 csi = csi.drop(columns=pilotsubcarriers)

38

39 csi[csi > 4000] = 0

40

41 file_hdf_unfil = str(file_pcap).replace(config.path_pcap , config.

path_data).replace(’.pcap’, ’.h5’)

42 file_hdf_unfil = file_hdf_unfil.replace(str(site_hdf), str(

site_hdf_nonfil))

43 csi.to_hdf(file_hdf_unfil , key=’all’)

44

45 # Calculate Distance from Mean of CSI

46 csi_distfrommean = ((csi - csi.mean())**2).sum(axis =1).sort_values(

ascending=True)

47

48 # Remove 1/3 of the samples based on distance from mean.

49 csi_fil = csi[csi.index.isin(csi_distfrommean [:8000]. index)]

35

50

51 # Average every 4 consecutive samples.

52 csi_fil = csi_fil.groupby(np.arange(len(csi_fil))//4).mean()

53

54 file_hdf = str(file_pcap).replace(config.path_pcap , config.path_data)

.replace(’.pcap’, ’.h5’)

55 csi_fil.to_hdf(file_hdf , key=’all’)

56 else:

57 print(’Skipping existing location ’, site_hdf)

Listing A.3: ’pre-process.py’

1 sites = [

2 ’nlos -b’,

3 # ’los -a’

4]

5

6 path_pcap = ’../thesis -pcap’

7 path_data = ’../thesis -dataset ’

8 path_scores = ’../ thesis -scores ’

9 path_models = ’../ thesis -models ’

10 path_plots = ’../thesis -plots’

11

12 channel = 36

13 bandwidth = 40

14 macid = "34:e8:94:bd:e1:cc"

15

16 def confirm(name):

17 ’’’

18 Ask for confirmation before potentially

19 destructive activities.

20 ’’’

21 confirmation = input(’This overwrites data. Type %s to proceed: ’ % (name))

22 if confirmation != name:

23 print(’Exiting.’)

24 exit (0)

Listing A.4: ’config.py’

1 import pandas as pd

2 from sklearn.model_selection import train_test_split

36

3

4 def read_dataset(hdf_files):

5 df_s = []

6 for hdf_file in hdf_files:

7 df = pd.read_hdf(hdf_file , key=’all’)

8 df[’loc’] = hdf_file.stem

9

10 df_s.append(df)

11

12 df = pd.concat(df_s)

13 return (df.drop(columns =[’loc’]), df[’loc’])

14

15

16 def split_dataset(hdf_files , ratio =0.2, random_state =32):

17 Xtrain_s , Xtest_s , ytrain_s , ytest_s = [], [], [], []

18 for hdf_file in hdf_files:

19 df = pd.read_hdf(hdf_file , key=’all’)

20 df[’loc’] = hdf_file.stem

21

22 X = df.drop(columns =[’loc’])

23 y = df[’loc’]

24

25 Xtrain , Xtest , ytrain , ytest = train_test_split(X, y,

26 test_size=ratio ,

27 shuffle=False ,

28 random_state=random_state

29)

30

31 Xtrain_s.append(Xtrain)

32 ytrain_s.append(ytrain)

33 Xtest_s.append(Xtest)

34 ytest_s.append(ytest)

35

36 Xtrain = pd.concat(Xtrain_s)

37 ytrain = pd.concat(ytrain_s)

38 Xtest = pd.concat(Xtest_s)

39 ytest = pd.concat(ytest_s)

40

37

41 return (Xtrain , ytrain , Xtest , ytest)

Listing A.5: ’lib/hdf.py’

1 ’’’

2 pcap

3 ====

4

5 Provides fast methods to read CSI data from .pcap files.

6 ’’’

7

8 __all__ = [

9 ’read_csi ’

10]

11

12 import os

13 import numpy as np

14

15 def _read_csi_next(pcapfile , csi_size):

16 """

17 Note: Designed for internal use only.

18

19 Parameters

20 ----------

21 pcapfile : File Object

22 csi_size : Expected length of CSI in bytes. NFFT * 4

23 """

24

25 # Read Frame Size

26 pcapfile.seek(8, os.SEEK_CUR)

27 frame_size = int.from_bytes(

28 pcapfile.read (4),

29 byteorder = ’little ’,

30 signed = False

31)

32

33 # Skip some stuff

34 pcapfile.seek(56, os.SEEK_CUR)

35

36 # Read CSI data

38

37 pcapfile.seek(8, os.SEEK_CUR)

38 csi = np.frombuffer(

39 pcapfile.read(csi_size),

40 dtype = np.int16 ,

41 count = int(csi_size / 2)

42)

43

44 # Skip any zero -padding

45 pcapfile.seek((frame_size - csi_size - 60), os.SEEK_CUR)

46

47 return csi

48

49 def read_csi(pcap_file_path):

50 """

51 Read CSI data from PCAP file.

52 Supports only 40MHz bandwidth ,

53 and only one Mac ID. You have

54 to remove null subcarriers

55 yourself.

56

57 Parameters

58 ----------

59 pcap_file_path : str

60 """

61

62 bandwidth = 40

63

64 NFFT = int(bandwidth * 3.2) # Number of channels in FFT

65 chunksize = 1024

66

67 csi = np.zeros((chunksize , NFFT * 2), dtype = ’int16’)

68

69 with open(pcap_file_path , ’rb’) as pcapfile:

70 filesize = os.stat(pcap_file_path).st_size

71 pcapfile.seek(24, os.SEEK_SET)

72

73 npackets = 0

74 while pcapfile.tell() < filesize:

75 if not (npackets % chunksize):

39

76 csi = np.vstack ((csi , np.zeros((chunksize , NFFT * 2), dtype = ’

int16’)))

77

78 csi[npackets] = _read_csi_next(pcapfile , NFFT * 4)

79

80 npackets += 1

81

82 # Convert CSI complex numbers to Magnitude.

83 csi_converted = np.abs(

84 np.fft.fftshift(csi[:npackets , ::2] + 1.j * csi[:npackets , 1::2], axes

=(1,))

85)

86

87 return csi_converted

Listing A.6: ’lib/pcap.py’

1 ’’’

2 plot

3 ====

4

5 Provides convenient plotting methods for CSI analysis.

6

7 hist : Plot histograms.

8 csi : Efficiently plot one or more CSI samples.

9 multiple : Efficiently plot multiple lines in one plot.

10 ’’’

11

12 __author__ = ’Aravind Reddy V’

13 __email__ = ’aravind.reddy@iiitb.org’

14 __copyright__ = ’Copyright 2020, Aravind Reddy V’

15 __license__ = ’MIT’

16

17

18 __all__ = [

19 ’hist’,

20 ’csi’,

21 ’multiple ’,

22 ’simple ’

23]

40

24

25 import numpy as np

26 import pandas as pd

27 from matplotlib import pyplot as plt

28 from matplotlib.collections import LineCollection

29

30 def simple(y):

31 ’’’

32 Plotting tool for simple data.

33

34 The hope is, you’d never plot this way.

35 So no saveplot functionality is provided.

36 ’’’

37 x = np.arange(0, y.size)

38 x = x - 64

39

40 fig , ax = plt.subplots ()

41

42 fig.set_size_inches (16, 10)

43

44 ax.set_xlabel("Subcarrier", fontsize =20)

45 ax.set_ylabel("Amplitude", fontsize =20)

46 ax.tick_params(axis=’both’, which=’major’, labelsize =16)

47 ax.tick_params(axis=’both’, which=’minor’, labelsize =18)

48 ax.set_title(’CSI’, fontsize =20)

49

50 ax.plot(x, y)

51

52 plt.autoscale(enable=True , axis=’both’, tight=None)

53 plt.savefig(’./ simple.png’)

54 plt.close(’all’)

55

56 def hist(data , title , savepath , nbins =100):

57 ’’’

58 Plot a histogram of given data.

59

60 Parameters

61 ----------

62 data : Row vector of ints.

41

63 ’’’

64 plt.hist(data , align=’mid’, bins=nbins)

65

66 plt.title(title)

67 plt.savefig(savepath , dpi=100, fontsize =20)

68 plt.close(’all’)

69

70 def multiple(x, ys, title , savepath , xlabel , ylabel):

71 ’’’

72 Efficiently plot several lines in one plot.

73 ’’’

74

75 lines = LineCollection ([np.column_stack ([x, y]) for y in ys])

76 lines.set_array(x)

77

78 fig , ax = plt.subplots ()

79 fig.set_size_inches (16, 10)

80

81 ax.add_collection(lines)

82 ax.set_xlim(np.min(x), np.max(x))

83 ax.set_ylim(np.min(ys), np.max(ys))

84 ax.set_xlabel(xlabel , fontsize =20)

85 ax.set_ylabel(ylabel , fontsize =20)

86 ax.tick_params(axis=’both’, which=’major’, labelsize =16)

87 ax.tick_params(axis=’both’, which=’minor’, labelsize =18)

88 ax.set_title(’2000 CSI samples ’, fontsize =20)

89

90 # nullsubcarriers = [-64, -63, -62, -61, -60, -59, -1, 0, 1, 59, 60, 61, 62,

63]

91 # for ns in nullsubcarriers [: -1]:

92 # plt.axvline(x=ns, c=’r’)

93 # plt.axvline(x=nullsubcarriers [-1], label=’Null Subcarriers ’, c=’r ’)

94

95 # pilotsubcarriers = [11, 25, 53, -11, -25, -53]

96 # for ps in pilotsubcarriers [: -1]:

97 # plt.axvline(x=ps, c=’k’)

98 # plt.axvline(x=pilotsubcarriers [-1], label=’Pilot Subcarriers ’, c=’k’)

99

100 # plt.legend(loc=’upper right ’, fontsize =18)

42

101

102 plt.savefig(savepath , dpi=100, fontsize =20)

103 plt.close(’all’)

104

105 def csi(data , title , filepath):

106 ’’’

107 Efficiently plot several CSI samples in one plot.

108

109 Parameters

110 ----------

111 data : Should be a numpy array of dim (m, NFFT), and m >= 1.

112

113 Examples

114 --------

115 >>> import plot

116 >>> plot.csi(csi , ’CSI data ’, ’./csi.png ’)

117 >>> plot.csi(np.array ([csi [0]]) , ’Single CSI sample ’, ’./csi.png ’)

118 ’’’

119 nfft = int(data.shape [1])

120

121 x = np.arange(-1 * nfft/2, nfft /2)

122

123 multiple(x, data , title , filepath , xlabel="Sub -carrier", ylabel="Amplitude")

124

125 def crossvalidation(df, model , title , filepath):

126

127 ax = df.plot(

128 colormap=’jet’,

129 title=title ,

130 fontsize =20,

131 figsize =(16, 10),

132 y=[’original order’, ’sorted ’]

133)

134

135 ax.set_title(title , fontsize =20)

136 ax.set_xlabel(’Index of AP’, fontsize =20)

137 ax.set_ylabel(’Crossvalidated Accuracy ’, fontsize =18)

138 ax.tick_params(axis=’both’, which=’major’, labelsize =16)

139 ax.tick_params(axis=’both’, which=’minor’, labelsize =18)

43

140

141 ax.legend(prop={’size’: 20})

142

143 plt.gca().lines [0]. set_alpha (0.3)

144

145 plt.autoscale(enable=True , axis=’both’, tight=None)

146 plt.savefig(filepath)

147 plt.close(’all’)

148

149 def stat(statistic , title , filepath , xmin=20, xmax =100):

150 statistic[’trainpercent ’] = range(1, 100)

151 cropped = statistic[statistic[’trainpercent ’].isin(range(xmin , xmax +1))]

152

153 ax = cropped.plot(

154 x=’trainpercent ’,

155 y=[’nbc’, ’svc’, ’dtc’, ’rfc’],

156 colormap=’jet’,

157 title=title ,

158 fontsize =20,

159 figsize =(16, 10)

160)

161

162 ax.set_title(title , fontsize =20)

163 ax.set_xlabel(’Percentage of Dataset used for Training ’, fontsize =20)

164 ax.set_ylabel(’Accuracy ’, fontsize =20)

165 ax.tick_params(axis=’both’, which=’major’, labelsize =16)

166 ax.tick_params(axis=’both’, which=’minor’, labelsize =18)

167 ax.legend(prop={’size’: 20})

168

169 if title==’Standard Deviation ’:

170 ax.set_ylabel(’Standard Deviation of Accuracy ’, fontsize =20)

171

172 plt.autoscale(enable=True , axis=’both’, tight=None)

173 plt.savefig(filepath)

174 plt.close(’all’)

Listing A.7: ’lib/plot.py’

