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Abstract—The accurate localisation of multiple objects and
people in indoor environments is challenging. The problem is of
immense importance in the context of Internet of Things (IoT)
applications. In many scenarios, there is a high density of people
and objects which need to be spatially and temporally tracked.
As IoT applications find increasing use not only in industrial
applications but also in novel areas such as healthcare in the
hospital settings, indoor localisation challenges need redress. The
paper addresses a novel technique for indoor localisation for
a resolution of 10 cm for Line-of-sight (LoS), and Non-Line-
of-sight (NLoS) setup. The received signal strength indication
(RSSI) based on WiFi signal is thoroughly studied in the past
and has offered localisation solutions, yet it is highly sensitive
to temporal and spatial variance due to multipath effect. The
Channel state information (CSI) signal transmitted from WiFi
hardware offers both space and time information, remains
relatively stable with multipath propagation and interference,
thereby the signal is considered highly suitable for designing
localisation techniques with precision. The proposed solution is
designed on an open source hardware, and CSI fingerprinting
database for 100 locations that are spaced 10 cm apart for line-
of-sight (LOS) and Non-line-of-sight (NLOS) configurations are
acquired to generate classifier models using different Machine
Learning algorithms. Random forest classifier model showed
localisation results of 93.15% and 98.01% for LOS and NLOS
respectively, for a resolution of 10 cm, which is reported for the
first time. The design and technique can be further extended
to various applications including patients localisation in dense
waiting room of hospitals, home medical care, and other multiple
tools localisation in an industrial environment using existing WiFi
router infrastructure.

I. INTRODUCTION

Outdoor localisation systems like GPS have had a pro-
found impact on the world, benefiting mankind in navigation,
location based access, controlled security, distress handling,
and many such significant and critical applications. Satellite
based positioning, Light detection and ranging (LIDAR) based
tracking and other standard methods used in outdoor locali-
sation are not suitable for indoor settings. The difficulty in
indoor localisation has resulted in techniques with difficult to
fulfill requirements and has hindered applications. Industry 4.0
which is the driving force for IoT adoption also faces signif-
icant challenges in tracking people and material in confined
closed environments.

Healthcare is one of the upcoming areas where IoT practises
are expected to be adopted [1], [2]. The changes in healthcare
owing to the novel Coronavirus pandemic has ensured that
the changes would be implemented sooner than later. Large
hospitals have multiple areas where indoor tracking is of vital

importance. Instances include out-patient departments, espe-
cially in Indian Government-funded hospitals where crowding
is a norm. Conventional crowd control measures largely have
been noted to be ineffective. The pandemic situation has
necessitated looking at novel methods for indoor tracking for
crowd control. An Intensive care unit is another area where a
patient is surrounded by numerous devices which need to be
tracked. In tracking these devices, the physical presence is of
the same importance as the data which is received or processed
by the device. Examples include Injection-Pumps, Ventila-
tors, Mobile Vital-signs-monitors such as Pulse-Oximeters etc.
Most modern operating rooms have a multitude of equipment
which are used during various surgeries. Cardiac surgeries,
surgeries on brain and spinal cord ensure that there is wide
circulation of material and people both within the operating
room as well as the operating rooms and stores. In all scenarios
listed here, the existing practises involve personal intensive
methods of documentation which is primarily contact based.
IoT applications when implemented would ensure seamless
non-contact data transfer which is the need of the hour. The
implementation of IoT frameworks in turn necessitate accurate
and high resolution Temporal-Spatial localisation which is
consistent, repeatable, and seamless with existing technology.

In addition, the indoor localisation is highly useful in other
applications such as fire rescue operations in large shopping
malls. Given the vast demand, a highly accurate and precision
based indoor localisation is immediately needed to serve the
society. Simultaneously realizing indoor localisation using
existing technology seems a more practical approach, instead
of developing a novel device and equipment for the same,
where additional infrastructure cost and time to install is
needed [3].

The primary challenges for indoor localisation ranges from
lack of GPS signals reaching indoors, to unpredictable wireless
propagation conditions [4]. Indoor localisation using inbuilt
sensors in the smartphones such as Inertial Measurement Unit
(IMU), light, and acoustic sensors are attempted [5] in the
past. However these sensors data have biases from the sources
of signals, or require specific indoor designs such as LEDs
or optical sources for light-based-localisation, and similarly
narrow space indoors for acoustic sensors based localisation
to be implemented [5]. The standalone IMU sensors do not
offer accurate localisation measurements. WiFi based RSSI
fingerprinting is an alternate technique and is highly em-
ployed owing to its features including ease of availability,
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privacy protection, and low deployment cost [6]. It offers
better localisation results when compared to WiFi triangulation
technique. However RSSI suffers from multipath interference,
and shadowing effects in a complex wireless environment [7],
[8]. Hence in the recent past, many have resorted to CSI signal
for precise indoor localisation [9]. CSI signals are considered
highly stable and consists of rich information that character-
izes wireless information in detail [3]. The CSI embeds two
features: physical layer power feature, and channel response
that remains undeterred to multipath reception, and temporal
dynamics [7]. The CSI based localisation was introduced in
[10], with few of the machine learning techniques, however
the classification accuracy was reported for a minimum of
1 m localisation. An improved classification algorithm applied
on CSI phase information was reported in [11]. Multipath
CSI phase information was utilized to fingerprint and further
localize the user as stated in [12]. A regression technique
was applied on the CSI phase driven classifier results to
obtain localisation results [13]. A linear transformed phase
calibrated data was applied to neural network and localisation
was attained [14]. However in most of the cases reported on
CSI phase driven localisation, the accuracy is low due to the
highly fluctuating nature of phase parameter [3]. Meanwhile
effective CSI amplitude from sub-carriers were extracted and
indoor localisation propagation model was also studies. The
localisation coordinates of the target are estimated by trilateral
method [15], which provided results for 1m resolution, and
accuracy dropped to 50% for 0.5m. The technique is not
useful for close proximity localisation. In an other study, a
probabilistic model was adopted to map the observed CSI with
the stored fingerprints, and around 1 m localisation accuracy
was effectively achieved using more than 3 access points [16].
89% accuracy in a grid like spot structures of dimensions
1m × 1m was localized using the mixture of Gaussian
distribution of channel response across reference points. A
system was designed from off-the-shelf Intel 5300 cards to es-
tablish the localized signature [17]. A similar yet open source
hardware independent of protected design will be highly useful
for application developers. A K-means clustering technique
was applied in the past [18], to determine localisation for a
resolution of 1.26 m. Random forest driven indoor localisation
for LoS, and NLoS were implemented using four routers to
a resolution of 1 m, with high accuracy [19]. A triangular
Centroid algorithm was applied on CSI amplitude signature
acquired from narrow band-IoT device [20]. The localisation
error obtained from triangle Centroid algorithm was further
optimized by conjugate gradient method, and much stable
localisation results were obtained. The above CSI methods
employed were reported for a resolution range of 1 m, and in
addition, the hardware was custom designed on a commercial
chipset, thereby inhibiting other designers and developers.
Most of the indoor localisation methods employed multiple
access points. The paper proposes a indoor localisation solu-
tion using CSI fingerprinting method, by employing the widely
available and open source Raspberry Pi single board computer.
The paper demonstrates a design that sniffs CSI signal from

the single WiFi router and establishes fingerprint database
consisting of pre-processed CSI amplitude for a resolution
of 10 cm and above. Further different Machine learning
techniques including Support Vector Machine and Random
Forest Classifier was used to determine the localisation results
for resolution of 10 cm for LoS and NLoS settings.

II. SYSTEM DESIGN

As WiFi signals travel through an indoor environment, they
are affected by multipath effect, Scattering, Fading, and Power
Decay, among other phenomenon. Channel State Information
(CSI) describes the combined effect of the phenomenon for
WiFi signal as it propagates from the transmitter to the
receiver. Localisation by CSI fingerprinting is achieved by
collecting CSI data and comparing it with a database of CSI
samples whose location is stored in the database. Raspberry
Pi 3B+ was chosen because of its widespread availability,
affordability, and capability of forming 40 MHz WiFi links.
The default Broadcomm firmware does not allow acquisition
of CSI data, so Nexmon framework [21] was used to patch a
modified firmware [22] to enable CSI collection. The patch
allows CSI data to be embedded in a UDP stream which
was captured using tcpdump utility in a .pcap format. WiFi
functionality of the chip is not accessible while collecting CSI
data, so an Ethernet link was used to communicate with the
Raspberry Pi. The device was mounted on a stand as shown
in the Fig. 1, that elevates the acquisition system to 30 cm
above ground and measures CSI for all packets transmitted by
the router. The stand design is imperative to maintain 30 cm
clearance above the floor to minimize capturing of radio waves
reflections from the surface, and at the same time allows to
maintain a steady position for the device for the fingerprinting
activity. A router of TP-Link Archer C20 acting as a Wireless
Access Point, operating on 802.11ac, and channel 36 with a
40 MHz bandwidth was deployed for the fingerprinting and
localising experiments. Access Points created with hotspot
feature of mobile phones showed increased noise in CSI
signal when compared to WiFi router device. Additionally,
the WiFi router is a part of general infrastructure design in
today’s large campus, hence validating experimental results
using WiFi access point is close to real life scenario.

III. EXPERIMENTS AND RESULTS

CSI data was collected in both Line-of-sight (LoS) and Non-
line-of-sight (NLoS) locations, which are shown in Fig. 2.
The LoS site and the router were about 50 cm apart with
no obstructions in between, while the NLoS site was in a
neighbouring room with a concrete wall and few furniture
in between. The furniture position was not changed through
the fingerprinting and validation experiments. To reflect real-
world results, all the experiments were done in a residential
setting with people present and moving. 12000 samples of CSI
were collected at each of the 100 fingerprint locations under
LoS settings and 18 fingerprint locations in NLoS setting,
that are spaced 10 cm apart. CSI data has both Phase and
Amplitude information, but the former was considered highly
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Fig. 1. A picture showing Raspberry Pi mounted on a wooden stand, and is
powered with a USB cable.

sensitive, and hence was discarded, retaining the absolute
Amplitude of CSI for fingerprinting. The 40 MHz WiFi link
contains 128 sub-carriers, including 108 Data sub-carriers,
11 Guard sub-carriers, 3 Null sub-carriers, and 6 Pilot sub-
carriers. Guard and Null sub-carriers are not modulated while
the Pilot sub-carriers use a different modulation than the Data
sub-carriers, so CSI from these three sub-carriers was filtered
away. An image of CSI data post removal of unused sub-
carriers is shown in the Fig. 4. CSI is sensitive to changes in
the channel, and as such, movement and activity in the indoor
environment add noise to the data. Hence a simple yet effective
method to de-noise the CSI data was employed. At each
location, Centroid of the 12000 CSI samples was calculated
and 1

3

rd of the samples farthest from the Centroid in 108-
dimensional Cartesian-distance were considered outliers and
were eliminated. Every 4 consecutive samples of the remaining
2
3

rd were averaged to yield 2000 samples with an improved
noise level. The de-noise processed CSI data was considered
as fingerprints for all the 100 LoS locations, and 18 NLoS
locations mentioned above.

A framework showing the pre-processing of CSI data in-
cluding de-noising, and few sub-carriers removal was used to
train classifier model and testing, and the same is shown in
Fig. 3. In our experiments, a model was developed each for
LoS and NLoS sites. 80% of the de-noised CSI data was used
for training and was tested against the remaining 20% samples.
Note that 20% test data represents 40,000 pre-processed de-
noised CSI samples for LoS, and of 7,200 samples for NLoS
locations.

Each of the classification techniques: Gaussian Naive Bayes
classifier (NBC), Support Vector classifier (SVC), Decision
Tree classifier (DTC), and Random Forest Classifier (RFC)

(a) (b)

Fig. 2. Snapshot showing CSI data collection points at (a) line of sight
position, and (b) non line of sight position.

(a)

(b)

Fig. 3. Diagram showing the system framework for (a) Training, and (b)
Testing of CSI fingerprinting based localisation.

were used to generate a model at three resolutions: 10 cm,
20 cm, and 40 cm in both LoS and NLoS conditions. The
default classification parameters for each of the classifiers
with Scikit-learn version 0.23 were used. The default Radial
Basis Function (RBF) kernel and Regularisation Parameter of
1.0 was used in SVC. The RFC model was trained using
20 estimators. For every classifier, a confusion matrix was
generated from testing against 20% of the samples and was
used to calculate accuracy and error statistics. The Figures 6, 7
show that SVC and RFC yield the highest accuracy and lowest
mean distance error for 10 cm resolution. Mean distance
error reported is the average Cartesian distance between the
classified location of a sample and its actual location, across
the test samples. Accuracy and mean distance error for SVC,
and RFC for three different localisation resolutions under
LoS and NLoS configurations are reported in Table I. RFC
and SVC showed high accuracy for NLoS when compared
with LoS configuration. In LoS, the CSI fingerprint at each
location consists of two types of signals received from the
router: direct path signal, and reflected Multipath signal. The
direct path remains strong, as it covers less distance, and
signal strengths drops with square of distance. In LoS, the
direct path component dominates the CSI signal leading to
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Fig. 4. CSI signal post removing Null and Pilot sub-carriers in one of the
LoS position.

Fig. 5. De-noised CSI signal in one of the LoS position, which is fingerprinted
and further employed for developing classifier model.

less signal variance between neighboring localised points. In
NLoS, only the reflected signals are present, offering distinct
signal strength between neighboring localised points due to
the reception of signal from different multiple reflective paths.
The distinct signal strength offers high accuracy in NLoS
configuration.

Temporal data fusion was used to further improve the
localisation accuracy. By classifying 5 consecutive de-noised
CSI samples and selecting the most frequently occurring
classification as our final prediction, the localisation accuracy
was boosted to 99.96% for both SVC and RFC classifiers in
both LoS and NLoS scenarios.

The final localisation accuracy obtained from temporal data
fusion technique can be calculated using simple probability
techniques and is expressed as shown in the equation 1,
where Pc is the model classification accuracy, and Pfinal

is the final localisation accuracy. Graph in the figure 8 is
plotted from equation 1 which shows the localisation accuracy

Fig. 6. Classification accuracy at 10 cm resolution for Naive Bayes (NBC),
Decision Tree (DTC), Support Vector (SVC), and Random Forest (RFC)
classifiers.

Fig. 7. Mean Distance Error (cm) at 10 cm resolution for Naive Bayes
(NBC), Decision Tree (DTC), Support Vector (SVC), and Random Forest
(RFC) classifiers.

obtained from temporal data fusion versus model classifica-
tion accuracy. To summarize the advantage of temporal data
fusion method, 100 samples per second were acquired by the
designed client device, from which 1

3

rd are filtered away for
being noisy, remaining with 66 samples. Every 4th samples
are averaged to further render noise free CSI signal. Finally
temporal fusion of 5 samples were performed to achieve
enhanced localisation to seek 3 predictions in a second with
an accuracy of close to 99.96% for 93.15% accuracy obtained
from RFC for 10 cm localisation in LoS condition.

Pfinal = 1−((1−Pc)
3×P 2

c + (1−Pc)
4×Pc+(1−Pc)

5×P 0
c )
(1)
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Fig. 8. Localisation accuracy using Temporal Data Fusion versus Model
classification accuracy plot shows the extent of accuracy improvement using
data fusion.

TABLE I
MEAN ERROR AND ACCURACY FOR 3 DIFFERENT RESOLUTIONS.

Classifier Resolution LoS NLoS
Mean-error Accuracy Mean-error Accuracy

SVC
10 cm 3.43 cm 92.73% 0.42 cm 98.71%
20 cm 0.79 cm 98.70% 0.49 cm 98.50%
40 cm 1.06 cm 98.56% 0.77 cm 98.09%

RFC
10 cm 3.18 cm 93.15% 0.65 cm 98.01%
20 cm 0.53 cm 98.95% 1.01 cm 97.29%
40 cm 0.27 cm 99.53% 1.02 cm 97.47%

IV. CONCLUSION

CSI signal fingerprinting method for precise localisation
using open source hardware platform is demonstrated suc-
cessfully. The CSI fingerprinting method using a single router
showed an accuracy of more than 98% in NLoS condi-
tions, and 93.15% in LoS conditions using Random Forest
Classifier for a resolution of 10 cm. The higher accuracy
in NLoS compared to LoS conditions is attributed to the
higher dynamic range of NLoS signals which result in more
distinct fingerprints. The fingerprinting process although is
vulnerable to the changes in the positioning of interiors, but
for routine non structural changes, the proposed localisation
method offers significant value addition, considering that the
technique employs an existing WiFi infrastructure, and such a
localisation technique would vastly improve the push of IoT
applications in novel areas such as healthcare.
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