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ABSTRACT This paper presents a novel approach to Quadrature Amplitude Modulation (QAM) demodula-
tion using neural networks, addressing the limitations of traditional demodulation techniques in complex
channel conditions. Through systematic Neural Architecture Search and Hyper-parameter optimization,
we develop a family of Convolutional Neural Network architectures that demonstrate robust performance
across challenging channel conditions, includingmulti-path fading, inter-symbol interference, and non-linear
distortions, without requiring explicit channel estimation. We comparatively evaluate the members of the
family of networks to find a Pareto-optimal Neural Network Demodulator with a balance of demodulation
accuracy and computational cost, achieving an average accuracy of 99.658% across 4 dB to 24 dB SNR
while requiring less than 16,000 Floating-Point Operations (FLOPs) for every demodulated QAM-16
symbol. A practical Field Programmable Gate Array (FPGA) implementation that achieves 2.52 Million
bits per second throughput while maintaining 99.55% demodulation accuracy through structured pruning
and quantization-aware training is presented. Experimental validation over acoustic channels demonstrates
superior performance compared to traditional techniques, with performance further enhanced through fine-
tuning.

INDEX TERMS CNN, Communication, FPGA, LLR, Machine Learning, Multipath Components, NAS,
Neural Networks, QAM, Rayleigh Fading Channel, Soft Demodulation

I. INTRODUCTION
Modern digital communication systems rely critically on
sophisticated signal demodulation techniques that can ex-
tract information accurately from complex transmission en-
vironments. Quadrature Amplitude Modulation (QAM) has
emerged as a fundamental modulation scheme enabling high
spectral efficiency in contemporary communication infras-
tructures. Over the years, numerous demodulation techniques
based on stringent and complex Mathematical models have
been developed for demodulating QAM signals. Among
these, the log-MAP algorithm [1], introduced in 1994, has
been shown to be statistically optimal, albeit impractical from
an implementation standpoint because of the cost of computa-
tion needed. Subsequent research has focused on developing
approximations to this algorithm to reduce its computational
complexity, making it practical for deployment.

While the log-MAP algorithm has been foundational, and
its sub-optimal but computationally efficient approximations
remain a cornerstone of modern QAM demodulator designs,
their performance degrades under dynamic channel condi-

tions, non-linear distortions, and in the presence of multi-
path interference. As the demand for faster and more reliable
data transfer escalates—driven by the proliferation of high-
speed networks, expectations of ubiquitous connectivity, and
emerging modes of communication [2], [3], the limitations of
conventional demodulation techniques in complex real-world
scenarios have become increasingly apparent.
The contemporary technological ecosystem presents

unique opportunities for re-imagining signal processing tech-
niques. The advances in Machine Learning, particularly
Neural Network (NN) architectures, training techniques, and
the development of specialized hardware for accelerating
compute for Neural Networks, have catalyzed a paradigm
shift in solving historically intractable engineering challenges
[4]–[8]. Notably, Neural Networks have also received recog-
nition in the domain of Computer Networking and Digital
communication, employed in applications such as Network
Intrusion Detection [9], Modulation Recognition [10], [11],
Error Coding [12], and more.
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Neural Networks offer a compelling alternative by lever-
aging data-driven learning to implicitly model channel dis-
tortions and non-linearities. Notably, NN-based demodulators
circumvent the need for explicit channel estimation and iter-
ative decoding, thereby reducing algorithmic complexity. For
instance, recent work [13] demonstrates that neural demodu-
lators achieve comparable Bit Error Rate (BER) performance
to log-MAPwith lower power consumption. The inherent par-
allelism of Neural Networks also enables relatively straight-
forward demodulator throughput scaling.

Despite these advantages and promising initial research,
existing Neural Network based demodulators have yet to
achieve widespread deployment. Most existing research re-
mains confined to idealized simulations, with evaluations
often restricted to Additive White Guassian Noise (AWGN)
channels or simplistic fading models and limited real-world
evaluation. Real-world deployments are further hindered by
reliance on power-intensive GPUs, TPUs, and similar ex-
pensive application specialized hardware, making large-scale
deployment impractical and cost-prohibitive. This gap be-
tween theoretical promise and practical viability motivates
our work.

In this paper, we address these challenges by develop-
ing a family of Neural Network Architectures and training
techniques that exhibit excellent performance even in com-
plex channel conditions. We study the family of networks
to evaluate the aspects of their architecture that affect their
viability and accuracy for QAM demodulation. Additionally,
we present the results of implementing one of the Neural Net-
works on a Field Programmable Gate Array (FPGA) device,
including latency, resource utilization, and throughput.

The remainder of this paper is structured as follows: Sec-
tion II reviews related work and identifies key limitations in
existing NN-based approaches to demodulation. Section III
formalizes the QAM demodulation problem and operational
constraints. Section IV details the data generation methodol-
ogy and simulation environment for NN Demodulator train-
ing and evaluation. Section V presents the Neural Network
Architecture Search (NAS) process and Hyper-parameter op-
timization for demodulator NNs. Section VI evaluates the
selected architecture across diverse channel conditions and
input data configurations. Section VII discusses FPGA re-
source utilization and ASIC synthesis outcomes. Section IX
concludes with future research directions, including the po-
tential for online learning in adaptive demodulation.

II. PREVIOUS WORK
Traditional QAM demodulation techniques are primarily
based on classical signal processing algorithms, such as
phase-locked loops, matched filters, and coherent detection
mechanisms. These methods are well-suited for high signal-
to-noise ratio (SNR) environments and rely on precise syn-
chronization and accurate channel estimation to achieve opti-
mal performance. Maximum Likelihood Estimation (MLE)
and the Log-Map algorithm have emerged as statistically
optimal approaches for soft-demodulation in terms of bit error

rate. However, these techniques encounter significant chal-
lenges when applied to higher-order QAM under complex
channel conditions, such as severe fading or interference,
due to their computational complexity and dependency on
idealized assumptions.
The advent of Neural Networks has prompted researchers

to explore their potential as alternatives to traditional com-
munication techniques. Early efforts utilized feed-forward
and Convolutional Neural Networks (CNNs) to perform tasks
such as modulation classification [11] and symbol detection.
Prior research in neural network-based demodulation has
explored various approaches, though with certain limitations
in scope and practical implementation. This section provides
an extensive review of previous Neural Network based ap-
proaches to demodulation, and FPGA implementations of
NN based solutions. A summary of key works is presented
in Table 1, which highlights the methodologies, modulation
schemes, channel models, and limitations of prior research.
Early attempts at Neural Network based demodulators

were directed at demodulating simpler modulation schemes.
An Amplitude Modulation (AM) demodulator was described
in [14] and showcases its FPGA implementation. Their use of
NN eliminated the intermediate frequency conversion stage
and allowed for use at wider bandwidths. However, they
use 64-bit Floating Point arithmetic, which restricts deploy-
ment to a limited set of accelerators while reducing the
throughput of the demodulator. Deep Convolutional Neural
Networks [26] were used to demodulate Frequency Shift
Keying modulation over a Rayleigh Fading Channel in [15].
An Elman Neural Network [27] is used for Binary Frequency
Shift Keying demodulation over AWGN channels in [16],
and for Amplitude Shift Keying (ASK), Phase Shift Keying
(PSK), and Frequency Shift Keying (FSK) in [17]. Variational
Auto Encoders (VAEs) [28] are used for interference cancel-
lation and signal detection in [18]. A Neural Network is pre-
trained and then fine-tuned for demodulation of Binary Phase
Shift Keying (BPSK) modulation over short-range multi-path
channels in [19]. Nearly optimal demodulation of Golden An-
gle Modulation (GAM) over AWGN channels using Neural
Networks was demonstrated in [20]. The network is shown
to have achieved this at lower computational complexity
than a traditional Maximum Likelihood (ML) demodulator.
A Deep Neural Network that uses Transfer Learning [29]–
[31] to learn channel conditions from Pilot Symbols for
BPSK demodulation is presented in [21]. A 1-Dimensional
Recurrent CNN designed to demodulate BPSK, and QPSK
is presented in [22], and is evaluated over an AWGN chan-
nel simulation. Notably, this paper uses a Parametric Leaky
ReLU [32], [33] activation function to mitigate vanishing gra-
dients when training the network. A Mixed Neural Network
composed of CNN and Recurrent Neural Network (RNN) is
proposed for ASK, FSK, and QAM-16 demodulation over
AWGN and Rayleigh Fading channels in [23]. Soft-Decisions
from a QAM-4 Zero-forcing equalizer are converted to Hard-
Decisions using a Neural Network in [24]. A standards com-
pliant real-time Neural Network receiver for 5G-NR is de-
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Table 1. Summary of existing Neural Network-Based Approaches to Demodulation

Reference Modula-
tion

Channel
Model

NN Archi-
tecture Hardware Key Contributions / Notes

KV et al. [14] AM AWGN Feed-forward XC7VX690T
Virtex-7 FPGA

Broader bandwidth operation through elimination of the In-
termediate Frequency stage. Implementation utilizes 64-bit
floating point arithmetic, which constrains both deployment
capabilities and maximum throughput.

Mohammad et
al. [15] FSK Rayleigh Deep CNN NVIDIA GT

840m GPU

The computational expense of deep network architectures
limits practical application. Authors report a theoretical
throughput of 123.33 kbps.

Li et al. [16] BFSK AWGN Elman NN –
Recurrent Architecture is used to demodulate a BFSK sig-
nal in an AWGN simulation with a baud rate of 400 bits per
second. Authors claim strong anti jamming capabilities.

Amini et al.
[17]

ASK, PSK,
FSK AWGN Probabilistic

NN
–

Authors evaluate NNs for multiple modulations and claim
computational efficiency advantages over conventional
feed-forward and Elman neural networks, though quantita-
tive throughput comparisons are absent from the analysis.

Wai et al. [18] BFSK,
4FSK

Experimental
Setup VAE 2.2 GHz Intel

Xeon CPU

An experimental setup involving a signal generator and
a signal transceiver was used to simulate real-world like
interference. Deep Variational Auto Encoders were used
in a novel way for interference cancellation. The authors
report a 2.17 kbps throughput for 4FSk.

Fang et al. [19] BPSK
Short Range
Multi-path

Twice Trained
Network

–

Authors propose a novel transfer learning methodology
intended to reduce computational complexity. However,
no throughput or computational complexity measurements
were provided. Evaluation conducted via multi-path chan-
nel simulation models real-world propagation conditions
better than other works.

He et al. [20] GAM AWGN Neural
Network

–

Demonstrates near-optimal bit-error performance for
Golden Angle Modulation while achieving reduced
computational complexity compared to Maximum
Likelihood demodulation approaches.

Ahmad et al.
[21] BPSK

AWGN,
Rayleigh,

Experimental
setup

Deep NN USRP SDR

Neural network architecture applied to both modulation
and demodulation processes. Parametric Leaky ReLU ac-
tivation investigated as a solution to gradient vanishing
phenomena. The architectural complexity suggests limited
throughput capability.

Zhao et al. [22] BPSK,
QPSK AWGN 1D CNN

NVIDIA GTX
2080TI GPU and

eight Intel
i7-7700 CPUs

NN employed for both modulation and demodulation. Para-
metric Leaky ReLu evaluated in addressing vanishing gra-
dients. Size of the proposed network implies comparatively
low throughput.

Wu et al. [23]
BFSK,

QPSK, and
16QAM

AWGN,
Rayleigh

CNN, RNN,
Hybrid

NVIDIA GTX
1080 GPU

Comparative analysis of multiple neural network archi-
tectures, with the most efficient implementation achieving
160 kbps throughput, while the highest accuracy network
operates at 67 kbps for BFSK. Performance metrics for
alternative modulation schemes are not provided.

Polvani et al.
[24] 4QAM

M-MIMO
Rayleigh Feed-forward –

Implements demodulation through transformation of Zero
Forcing equalizer soft-estimates to binary values. Demon-
strates reduced computational requirements relative to a
traditional method.

Wiesmayr et al.
[25]

QPSK,
16QAM,
64QAM

3GPP TLD-B,
3GPP TDL-C

Var-MCS
NRX with

Var-IO layers

NVIDIA A100
GPU

Presents a real-time 5G-NR receiver achieving sub-
millisecond inference latency on A100 GPU hardware with
multi-modulation support. Implementation viability is lim-
ited by the substantial computational requirements of the
architecture

Shental et al.
[13]

Multiple
QAM CDL Feed-forward –

Demodulation by NN is modeled as an approximation to
log-MAP and is shown to perform better than other approxi-
mations. Levenberg-Marquardt optimization algorithm was
employed for faster convergence.
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scribed in [25] and is shown to have an inference time shorter
than a millisecond when tested on an NVIDIA A100 GPU. A
feed-forward Neural Network is used for soft-demodulation
of multiple QAM and is evaluated over a Clustered Delay
Line (CDL) channel model in [13]. The paper suggests that
the Levenberg-Marquardt back-propagation algorithm [34]
shortens the training time for Neural Network demodulators
with low parameter count.

While previous research has highlighted the potential of
Neural Networks in addressing non-linearities and impair-
ments in communication systems, significant limitations per-
sist. First, most studies evaluate their models under simplistic
channel assumptions, such as AWGN or Rayleigh fading,
without considering more realistic multi-path fading or in-
terference scenarios. Second, the focus is often restricted to
simple modulation schemes like BPSK or FSK, with limited
applicability to higher-order modulations such as QAM. A
significant gap in the existing literature is the limited inves-
tigation into the relationship between Neural Network archi-
tectures and demodulation performance. Most studies present
single architectural solutions without comparative analysis
of different network configurations or systematic evaluation
of architectural choices. Furthermore, while various works
demonstrate promising results in simulation, there is a no-
table lack of hardware implementation studies, particularly
for more complex modulation schemes and channels.

III. PROBLEM INTRODUCTION
We aim to address the problem of demodulating QAM
(Quadrature Amplitude Modulation) symbols using Neural
Networks in this work. QAM is a widely used modulation
scheme in modern communication systems, particularly in
applications that require high-speed data transmission, in-
cluding WiFi, Digital Video Broadcasting (DVB), and 4G
LTE [35]–[37]. Our focus is to replace traditional demod-
ulators with a Neural Network based approach to directly
map received signals to their original transmitted data bits.
In this section, we formalize the communication model and
the scope of this work while clarifying the assumptions and
limitations.

Consider an M -QAM modulation scheme where M = 2k

and k ∈ N − {1}, denoting the number of bits per symbol.
Each symbol s ∈ C ⊂ C corresponds to a unique k-bit
vector c ∈ {0, 1}k . The constellation C consists ofM symbols
that are spaced in a rectangular grid in the complex plane.
For a rectangular M -QAM, the In-phase (I ) and Quadrature
(Q) components are independently spaced at equal intervals.
Formally:

C = {(2p+ 1−
√
M) + j(2q+ 1−

√
M)

| p, q ∈ {0, 1, . . . ,
√
M − 1}}.

A mapping function µ : {0, 1}k → C uniquely maps the
input k-bit vectors to symbols in the constellation C. This
mapping can be arbitrary. Let bk = {b1, b2, . . . , bk} ∈
{0, 1}k represent a vector of k bits to be transmitted, where

these bits are assumed to be independent and identically
distributed (i.i.d.) with equal probability of occurrence. As
µ uniquely maps bk to symbols in C, the symbols too have
an independent and identical distribution, and are equally
likely to be transmitted. This assumption can be reasonably
accommodated when generating training and validation data,
for small values of M (M < 10) typical in contemporary
communication systems.

Let xn be a vector containing n samples obtained after
mapping an arbitrary length input bit vector bn to symbols
in C. If these symbols are transmitted through a channel
with one Line-of-Sight (LoS) path and N Non-Line-of-Sight
(NLoS) paths between the transmitter and the receiver, then
the vector of samples observed at the receiver,yn, is expressed
as stated in (1), assuming the channel’s spectral and temporal
characteristics remain constant through the transmission.

y[n] =
N∑
i=0

giejϕix[n− di] + w[n] (1)

where:

ϕi : Phase delay of the i-th path

di : Delay of the i-th path

gi : Gain of the i-th path

i : 0, 1, . . . ,N for the LoS and N NLoS paths

w[n] : CN (0, σ2), Additive White Complex Gaussian Noise

The demodulators task is to map yn to soft estimates
b̂n ∈ Rk , where each entry corresponds to the LLR for the
associated bit:

b̂i = log
Pr(bi = 0 | yn)
Pr(bi = 1 | yn)

, i = 1, . . . , n.

A complete contemporary communication system would
include several intermediate steps between modulation and
demodulation. For instance, an IEEE 802.11ac WiFi trans-
mission would involve Orthogonal Frequency Division Mul-
tiplexing (OFDM) and up-conversion to carrier frequency.
Similarly, a WiFi receiver performs carrier acquisition, syn-
chronization, channel estimation and equalization from pilot
symbols, before the samples are presented to a QAM de-
modulator. From the perspective of the modulator and the
demodulator, these intermediate steps compose a compos-
ite discrete channel. Similar to traditional demodulators, the
proposed Neural Network demodulator is designed without
assumptions about this composite channel.
While conventional approaches rely on explicit equaliza-

tion and AWGN-based Log-Likelihood Ratios (LLR) approx-
imations (e.g., max-log-MAP), our NN demodulator learns to
infer LLRs directly from distorted observations (yn) through
data-driven training. Neural Networks have been shown to
be suitable for demodulation of complex, non-rectangular
constellations [20], however, we limit the scope of this work
and evaluation to equally spaced rectangular constellations.
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IV. DATA GENERATION
The data for training the demodulator is generated in ac-
cordance with the assumptions outlined in Section III. The
process begins with the generation of bits from a uniform
pseudo-random source. These bits are subsequently mapped
into QAM symbols. To model real-world transmission char-
acteristics and practices better, we implement symbol shaping
through Root Raised Cosine (RRC) filtering. Each symbol s
undergoes RRC filtering with a roll-off factor of β = 0.5
and is sampled at Ns = 4 samples per symbol prior to
transmission.

The composite transmission channel is modeled as discrete
multi-path channel with AWGN. Specifically, we use a Clus-
tered Delay Line (CDL) channel model with one Line-of-
Sight (LoS) path, three Non-Line-of-Sight (NLoS) clusters,
and added AWGN. The average delay and gains of these
paths are periodically perturbed during data generation to
ensure the robustness and generalisability of our demodulator.
The channel is assumed to be frequency flat, and both the
transmitter and receiver are considered stationary.

At the receiver, matched RRC filtering is applied to the
received signal and the NN demodulator is trained on these
filtered samples. An overview of this process is provided in
Fig. 1. To ensure the robustness of the demodulator, the train-
ing and evaluation datasets incorporate varying SNR levels
ranging from 4 to 24 dB, along with randomized channel
realizations.

Figure 1. Overview of data generation for NN demodulator training.

V. SEARCH FOR A SUITABLE NEURAL NETWORK
ARCHITECTURE
Designing an efficient neural network architecture is crucial
for achieving both high accuracy and computational effi-
ciency. Convolutional Neural Networks (CNNs) are particu-
larly well-suited for signal demodulation due to their inherent
ability to detect local patterns through convolution operations,
which aligns with our requirement to identify symbol patterns
and detect interference between adjacent symbols. Since sym-
bol interference is predominantly local (distant symbols have
minimal interference), we opted for CNNs over more com-
plex architectures designed for long-range pattern recognition
such as RNNs, LSTMs, or Transformers. While prior works

have explored various hand-designed model configurations,
we employed hyper-parameter optimization to systematically
determine an optimal CNN architecture suited for demodu-
lation. Optuna [38], a state-of-the-art hyper-parameter opti-
mization framework, was used to explore the search-space
efficiently. We formulate the optimization as a minimization
problem over the validation loss and the number of Floating
Point Operations (FLOPs) needed to run the model. The
optimization was performed on a cluster of six RTX 4090
GPUs.
The architecture consists of 1D convolutional layers fol-

lowed by fully connected layers as shown in Fig. 2. The search
included the following hyper-parameters:

• Number of Convolution layers, and the number of filters
in each Convolution layer: (CL1,CL2,CL3),

• Convolution Kernel Size,
• Number of Neurons in each Dense layer: (DL1,DL2),

and Dropout rate,
• Batch Size for training, and
• Learning Rate and its decay rate.
Optuna’s Bayesian Optimization framework enables sys-

tematic exploration of neural architecture hyper-parameters
through an adaptive, multi-objective search strategy. By prob-
abilistically modeling the sensitivity of each hyper-parameter
to the optimization objectives, the algorithm prioritizes re-
source allocation towards high-impact dimensions of the
search space. We augment this approach with an early stop-
ping mechanism that prunes sub-optimal trials early dur-
ing the training phase, thereby further prioritizing resources
towards more promising trials. The relative importance of
hyper-parameters as estimated by Optuna when using the
Adam Optimizer are presented in Fig. 3.
The multi-objective optimization landscape is visualized in

Fig. 4, which presents a scatter plot of BER versus FLOP
count across 250 architectural trials. Through the empirical
determination of the Pareto front, we identify non-dominated
architectures that optimally balance computational complex-
ity and error-correction capability. Notably, FLOP count ex-
hibits a non-linear relationship with BER below 10−3, neces-
sitating a pragmatic trade-off between inference throughput
and accuracy for deployment in latency-sensitive commu-
nication systems. Modern communication systems virtually
always use a Forward Error Correction (FEC) mechanism,
and we contextualize these results by analyzing the opera-
tional thresholds of modern FEC schemes. As demonstrated
in Fig. 5, FEC codes (LDPC, Turbo, and convolutional)
achieve an asymptotic BER=0 below a certain BER in the
un-coded stream. Crucially, when the pre-FEC BER reaches
10−3, all considered FEC implementations successfully de-
code to error-free outputs. This establishes the 10−3 BER
as a golden target, which balances accuracy and throughput,
beyond which only marginal gains of accuracy at the expense
of significicant loss of throughput are possible.
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Figure 2. Architecture of CNN Demodulator with Tensor dimensions.

Figure 3. Relative sensitivity of optimization objectives to considered
Hyper-parameters.

Figure 4. BER versus FLOPs for all models in the search-space. BER shown
is the average across 4 dB to 24 dB SNR. Lower is better for both axes.

Figure 5. BER versus SNR graph for various Forward Error Correction
codes. The simulation used BPSK modulation in an AWGN channel with a
code-rate of 0.5 for all codes.

Figure 6. BER versus SNR plot for every model on the Pareto-front. A few
distinct models are highlighted and labeled while the rest are shown as
pale blue dots. The numbers inside parenthesis represent model
configurations (CL1, CL2, CL3) whereas the number next to it is the FLOP
count of the model (Lower is better).
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VI. RESULTS

Figure 7. BER of a model with increasing number of input symbols.

Figure 8. BER vs SNR graph of the selected model.

After 250 trials, we identified a Pareto-optimal inference-
efficient model with a 99.658% average demodulation ac-
curacy across 4 dB to 24 dB SNR. The BER versus SNR
graphs for all the models on the Pareto-front are shown in the
Fig. 6. The optimal architecture derived from the Network
Architecture search was then tested in a channel simulation
as described in Section III with data generated as shown in
Section IV. We have evaluated the model with a varying
number of inputs. The average demodulation accuracy of
the model across 4 dB to 24 dB SNR as the number of
input symbols changes is shown in the Fig. 7, along with the
FLOP count of the model. A significant reduction in BER
was observed when the model processed multiple input sym-
bols simultaneously. This improvement is attributed to the
model’s enhanced capacity for inter-symbol interference (ISI)
mitigation when provided with extended temporal context,
enabling learned compensation of channel memory effects
through joint symbol analysis. We also observe that the FLOP

count of the model increases linearly with the number of input
symbols.
The observed performance-complexity tradeoffs suggest

that multi-symbol processing architectures achieve substan-
tial BER improvements without incurring prohibitive compu-
tational overhead. A BER versus SNR graph of the evaluated
model is presented in the Fig. 8.

VII. HARDWARE IMPLEMENTATION
The practical adoption of neural network-based demodulation
systems in real-world applications requires the development
of optimized hardware implementations capable of meeting
stringent real-time processing requirements. The fundamen-
tal obstacle lies in the substantial amount of Floating-Point
Operations (FLOPs) required for Neural Network inference.
Recent advancements in optimizing methodologies such as
Pruning, Weight Sharing, and Quantization Aware Training
(QAT) have demonstrated that substantial computation and
power savings reductions are achieved without significant
accuracy degradation [39]–[41]. Building upon these tech-
niques, we employ layer-wise structured pruning for filters
with a pruning schedule that starts with a 25% pruning ratio
and decreases by 0.25% every 10 epochs. With this method-
ology, we increased the sparsity of the model during training
and identified the filters in the layers that have completely
become sparse. We constructed a new, smaller model, elim-
inating all the filters in the layers that have entirely become
sparse, and created a smaller network with no reduction in
accuracy.
Layer-Wise, Symmetric-Quantization with Brevitas frame-

work was employed to realize the NN design in hardware.
Optimal bit-width allocation for the layers was determined
through statistical analysis of the distribution of weights and
activation outputs across network layers, which was used
to convert the Floating Point operations in the model to
Integer operations. This approach yielded an optimal quan-
tized model, with 4-bit Integer quantized weights and an 8-
bit Integer quantized Activation function (W4A8) configu-
ration, achieving 99.57% classification accuracy on our de-
modulation task, representing only a 0.09% accuracy reduc-
tion compared to the full-precision baseline. The optimized
network was subsequently exported in qONNX format for
hardware deployment, ensuring FPGA-agnostic compatibil-
ity. We employ the FINN framework for FPGA implemen-
tation. The FINN framework is specifically designed for de-
ploying Quantized Neural Networks on FPGA devices and
taking advantage of the heterogeneous resources on FPGAs
such as DSP and BRAM via hardware-aware compilation.
We evaluated multiple FINN configurations on the Xilinx
ZCU102 FPGA evaluation platformwith the clock period set-
ting of 20 ns, analyzing throughput-resource utilization trade-
offs through parametric benchmarking and summarizing the
results in Table 2. To obtain the maximum frequency of
operation and throughput in hardware, we increased the fre-
quency of the clock until a timing violation occurred, which
resulted in a functional violation. We obtained an optimized

VOLUME 11, 2023 7



A. Voggu et al.: SIGNETS: Neural Network Architectures for m-QAM Soft Demodulation

Table 2. Hardware utilization report from FINN framework. The maximum available quantity of each resource type shown in parentheses in the column
headers.

FINN
Target
FPS

CLB
LUTs
(274080)

CLB
Registers
(548160)

CARRY8
(34260)

F7
Muxes
(137040)

F8
Muxes
(68520)

CLB
(34260)

LUT
Logic
(274080)

LUT
Memory
(144000)

Block
RAM
(912)

DSPs
(2520)

Frequency
(MHz)

Through-
put
(Mbps)

850 28745 26580 2202 602 264 6360 26746 1999 151 5 166 0.5175
1500 28847 27797 2208 603 195 6464 26736 2111 148.5 6 175 0.646
2000 28808 26808 2218 549 142 6395 26713 2095 140.5 8 175 1.028
3500 29040 27134 2216 622 120 6534 26985 2145 141 15 150 1.83
6000 29124 27506 2210 762 296 6552 26741 2383 142.5 19 166 2.52
Resource
Utilization
Percentage
(6000 FPS)

10.63% 5.02% 6.45% 0.56% 0.43% 19.12% 9.76% 1.65% 15.62% 0.75%

implementation for the FPS setting of 6000, which achieves
a sustained throughput of 2.52 Million Bits per second while
maintaining 99.55% demodulation accuracy.

VIII. EXPERIMENTAL VALIDATION
To validate the real-world applicability of our proposed neural
demodulator, we designed a controlled experiment emulating
a multipath propagation environment. Given the constraints
of a laboratory setup, we employed an audio-based trans-
mission system, leveraging the slower propagation speed
of sound compared to electromagnetic waves to achieve
meaningful multipath effects within a limited physical space.
Our experimental testbed implemented a complete OFDM
communication chain using acoustic transmission between
a speaker and microphone pair, as illustrated in Figure 9.
The system operates with a 10 kHz bandwidth centered at 7
kHz carrier frequency, with all signals sampled at 44.1 kHz.
The frequency response of the speaker-microphone setup is
illustrated in Figure 10, while the spectral characteristics of
the generated OFDM signal are shown in Figure 11.

Figure 9. System architecture for audio-based OFDM transmission and
reception.

The transmitter chain incorporates several standard digi-
tal communication processing blocks. Input data undergoes
scrambling to eliminate long sequences of identical bits, fol-
lowed by Low-Density Parity-Check (LDPC) Forward Error
Correction (FEC) encoding [42]. The encoded bits are then
interleaved to mitigate the impact of burst errors on decoding

performance. This processed data stream is mapped using 16-
QAMmodulation, with a Zadoff-Chu (ZC) [43] sequence in-
serted as a preamble for frame synchronization andKronecker
structure pilot symbols embedded for channel estimation.
The resulting symbol stream undergoes OFDM modulation
before being modulated onto the final carrier and emitted via
a speaker. The transmitted signal is captured by a microphone
sampling at 44.1 kHz.

Figure 10. Measured frequency response characteristics of the
speaker-microphone acoustic channel.

Figure 11. Spectral characteristics of the transmitted OFDM signal.

We implemented two distinct receiver architectures to en-
able performance comparison. For the baseline demodula-
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tion approach, the received signal is processed through a
conventional pipeline. Synchronization is achieved through
correlation with the known ZC sequence. The signal is then
downconverted to baseband and OFDM-demodulated to ex-
tract the subcarriers. Channel estimation is performed using
the Least Squares (LS) method with linear interpolation be-
tween pilot symbols, followed by Linear Minimum Mean
Squared Error (LMMSE) equalization [44]. The equalized
symbols are demodulated using conventional 16-QAM soft-
demodulation. Finally, the data undergoes de-interleaving,
LDPC decoding, and descrambling to recover the transmitted
bits. In contrast, our neural network demodulator replaces the
entire channel estimation, interpolation, equalization, pream-
ble removal, and QAM demodulation with a single Neural
Network that directly produces demodulated soft symbols.

Figure 12. SNR versus BER performance comparison between baseline
traditional equalization technique and the proposed ML demodulator.

Figure 12 presents the BER versus SNR performance
comparison between the aforementioned baseline traditional
pilot-aided equalization-based demodulation and our pro-
posed ML demodulator. The neural network architecture em-
ployed in these experiments corresponds to the optimized
design detailed in previous sections of this paper. Although
pre-FEC bit error rates show similar performance between
the baseline and proposed approaches (with a slight consis-
tent advantage for the proposed method), post-FEC perfor-
mance demonstrates substantial improvements for the pro-
posed model-based demodulation method. This enhancement
is likely stems from the superior quality of the LLRs gener-
ated by the proposed NN demodulator, which provide more
reliable soft information for the LDPC decoder.

It should be noted that the SNR calculations presented in
Figure 12 may contain inherent limitations in accuracy. The
SNR was computed based on the ratio of transmitted signal
power to ambient noise power before and after transmission,
which does not account for all potential noise and distortion
sources. For instance, nonlinear effects such as hysteresis
in the speaker and microphone membranes introduce addi-
tional signal distortion. Furthermore, quantization noise from

the analog-to-digital converter (ADC) and digital-to-analog
converter (DAC), along with other unmodeled noise contri-
butions, may lead to an overestimation of the SNR. Conse-
quently, the true SNR may be lower than the values indicated
in the figure. These considerations should be taken into ac-
count when interpreting the absolute SNR values, though the
relative performance comparisons between methods remain
valid.
We would also like to note that the reported performance

metrics for the proposed neural network-based demodulator
are achieved under "blind decoding" conditions, wherein the
demodulating model operates without access to estimated
SNR or knowledge of the original pilot symbol values, both
of which are readily available to the baseline demodulator.
While pilot symbol samples are incorporated into the in-
put fed to the machine learning model, the corresponding
reference pilot values are randomly generated and remain
unknown to the network during training and inference. These
pilot symbols serve exclusively as additional contextual infor-
mation to enable themodel tomitigatemulti-path interference
effects through learned feature extraction.
The proposed neural demodulator’s performance can be

enhanced through fine-tuning with minimal channel-specific
data before inference. Fine-tuning involves adapting the pre-
trained model parameters using a small dataset collected from
the current channel, typically requiring only a few hundred
training samples. This process updates the network weights
through standard backpropagation, allowing the model to
better characterize current channel conditions such as chang-
ing multi-path effects, ambient noise levels, and frequency
response variations. Figure 13 shows four example images
transmitted through our acoustic system, comparing demod-
ulation results from: the baseline traditional demodulator, the
proposed demodulator without adaptation, and the proposed
demodulator with channel-specific fine-tuning. The proposed
methodwith fine-tuning exhibits the best performance overall
with lower BER and higher Structural Similarity Index Mea-
sure (SSIM) [45].

IX. CONCLUSION
This work demonstrates the viability of neural network-based
approaches for QAM demodulation in practical communi-
cation systems. Through systematic architecture exploration
and optimization, we have shown that carefully designed
convolutional neural networks can achieve performance com-
parable to traditional demodulation techniques while offer-
ing several key advantages. The ability to process multi-
ple symbols simultaneously enables effective handling of
inter-symbol interference, while the learned compensation for
channel memory effects eliminates the need for explicit chan-
nel estimation. Our hardware implementation results are par-
ticularly promising, showing that through structured pruning
and quantization-aware training, neural network demodula-
tors can achieve high throughput on FPGA platforms without
significant accuracy degradation. The achieved throughput of
2.52 Million bits per second while maintaining 99.55% accu-
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(a) Original (b) Baseline
BER = 0.151160
SSIM = 0.098080

(c) Proposed
BER = 0.032597
SSIM = 0.448545

(d) Finetuned
BER = 0.005478
SSIM = 0.854477

(e) Original (f) Baseline
BER = 0.077435
SSIM = 0.230015

(g) Proposed
BER = 0.006480
SSIM = 0.825478

(h) Finetuned
BER = 0.00726
SSIM = 0.975760

(i) Original (j) Baseline
BER = 0.097041
SSIM = 0.355828

(k) Proposed
BER = 0.013349
SSIM = 0.800423

(l) Finetuned
BER = 0.002023
SSIM = 0.962245

(m) Original (n) Baseline
BER = 0.127220
SSIM = 0.098302

(o) Proposed
BER = 0.018286
SSIM = 0.540690

(p) Finetuned
BER = 0.002910
SSIM = 0.896070

Figure 13. Comparison of image transmission quality through acoustic channel demodulation. From left to right: original images, results from baseline
traditional demodulator, proposed Neural Network demodulator, and proposed Neural Network demodulator with fine-tuning. The fine-tuned model
demonstrates superior Bit Error Rate and SSIM. The SNR was continuously varied throughout the experiment.

racy demonstrates the practical feasibility of deploying these
systems in real-world applications. The experimental valida-
tion conducted under realistic channel conditions character-
ized by time-varying, frequency-selective fading with multi-
path interference demonstrates the robustness and adaptabil-
ity of the proposed Neural Network demodulation technique.

Several directions for future research emerge from this
work. First, the potential for online learning and adaptation
of the neural network weights could enable dynamic adjust-
ment to changing channel conditions, potentially improving
performance in mobile scenarios. Second, the exploration
of more sophisticated quantization schemes and hardware-
aware neural architecture search could further optimize the
implementation efficiency. Finally, extending this approach to
higher-order QAM constellations and more complex channel
models would broaden its applicability in next-generation
communication systems. In conclusion, our results suggest
that neural network-based demodulation represents a promis-
ing direction for future communication systems, particularly
as hardware accelerators become more prevalent and the
demand for robust performance in challenging channel con-
ditions continues to grow. The demonstrated balance between
computational efficiency and demodulation accuracy, cou-
pled with successful hardware implementation, positions this
approach as a viable alternative to traditional demodulation
techniques in practical applications.

All the source code, datasets, and documentation re-
lated to this paper is made available for research use at:
https://github.com/zeroby0/signets .
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